Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
472 lines
12 KiB
472 lines
12 KiB
// Copyright 2016 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
#include "textflag.h" |
|
|
|
// func decode(dst, src []byte) int |
|
// |
|
// The asm code generally follows the pure Go code in decode_other.go, except |
|
// where marked with a "!!!". |
|
// |
|
// All local variables fit into registers. The non-zero stack size is only to |
|
// spill registers and push args when issuing a CALL. The register allocation: |
|
// - AX scratch |
|
// - BX scratch |
|
// - CX length or x |
|
// - DX offset |
|
// - SI &src[s] |
|
// - DI &dst[d] |
|
// + R8 dst_base |
|
// + R9 dst_len |
|
// + R10 dst_base + dst_len |
|
// + R11 src_base |
|
// + R12 src_len |
|
// + R13 src_base + src_len |
|
// - R14 used by doCopy |
|
// - R15 used by doCopy |
|
// |
|
// The registers R8-R13 (marked with a "+") are set at the start of the |
|
// function, and after a CALL returns, and are not otherwise modified. |
|
// |
|
// The d variable is implicitly DI - R8, and len(dst)-d is R10 - DI. |
|
// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI. |
|
TEXT ·decode(SB), NOSPLIT, $48-56 |
|
// Initialize SI, DI and R8-R13. |
|
MOVQ dst_base+0(FP), R8 |
|
MOVQ dst_len+8(FP), R9 |
|
MOVQ R8, DI |
|
MOVQ R8, R10 |
|
ADDQ R9, R10 |
|
MOVQ src_base+24(FP), R11 |
|
MOVQ src_len+32(FP), R12 |
|
MOVQ R11, SI |
|
MOVQ R11, R13 |
|
ADDQ R12, R13 |
|
|
|
loop: |
|
// for s < len(src) |
|
CMPQ SI, R13 |
|
JEQ end |
|
|
|
// CX = uint32(src[s]) |
|
// |
|
// switch src[s] & 0x03 |
|
MOVBLZX (SI), CX |
|
MOVL CX, BX |
|
ANDL $3, BX |
|
CMPL BX, $1 |
|
JAE tagCopy |
|
|
|
// ---------------------------------------- |
|
// The code below handles literal tags. |
|
|
|
// case tagLiteral: |
|
// x := uint32(src[s] >> 2) |
|
// switch |
|
SHRL $2, CX |
|
CMPL CX, $60 |
|
JAE tagLit60Plus |
|
|
|
// case x < 60: |
|
// s++ |
|
INCQ SI |
|
|
|
doLit: |
|
// This is the end of the inner "switch", when we have a literal tag. |
|
// |
|
// We assume that CX == x and x fits in a uint32, where x is the variable |
|
// used in the pure Go decode_other.go code. |
|
|
|
// length = int(x) + 1 |
|
// |
|
// Unlike the pure Go code, we don't need to check if length <= 0 because |
|
// CX can hold 64 bits, so the increment cannot overflow. |
|
INCQ CX |
|
|
|
// Prepare to check if copying length bytes will run past the end of dst or |
|
// src. |
|
// |
|
// AX = len(dst) - d |
|
// BX = len(src) - s |
|
MOVQ R10, AX |
|
SUBQ DI, AX |
|
MOVQ R13, BX |
|
SUBQ SI, BX |
|
|
|
// !!! Try a faster technique for short (16 or fewer bytes) copies. |
|
// |
|
// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 { |
|
// goto callMemmove // Fall back on calling runtime·memmove. |
|
// } |
|
// |
|
// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s |
|
// against 21 instead of 16, because it cannot assume that all of its input |
|
// is contiguous in memory and so it needs to leave enough source bytes to |
|
// read the next tag without refilling buffers, but Go's Decode assumes |
|
// contiguousness (the src argument is a []byte). |
|
CMPQ CX, $16 |
|
JGT callMemmove |
|
CMPQ AX, $16 |
|
JLT callMemmove |
|
CMPQ BX, $16 |
|
JLT callMemmove |
|
|
|
// !!! Implement the copy from src to dst as a 16-byte load and store. |
|
// (Decode's documentation says that dst and src must not overlap.) |
|
// |
|
// This always copies 16 bytes, instead of only length bytes, but that's |
|
// OK. If the input is a valid Snappy encoding then subsequent iterations |
|
// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a |
|
// non-nil error), so the overrun will be ignored. |
|
// |
|
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or |
|
// 16-byte loads and stores. This technique probably wouldn't be as |
|
// effective on architectures that are fussier about alignment. |
|
MOVOU 0(SI), X0 |
|
MOVOU X0, 0(DI) |
|
|
|
// d += length |
|
// s += length |
|
ADDQ CX, DI |
|
ADDQ CX, SI |
|
JMP loop |
|
|
|
callMemmove: |
|
// if length > len(dst)-d || length > len(src)-s { etc } |
|
CMPQ CX, AX |
|
JGT errCorrupt |
|
CMPQ CX, BX |
|
JGT errCorrupt |
|
|
|
// copy(dst[d:], src[s:s+length]) |
|
// |
|
// This means calling runtime·memmove(&dst[d], &src[s], length), so we push |
|
// DI, SI and CX as arguments. Coincidentally, we also need to spill those |
|
// three registers to the stack, to save local variables across the CALL. |
|
MOVQ DI, 0(SP) |
|
MOVQ SI, 8(SP) |
|
MOVQ CX, 16(SP) |
|
MOVQ DI, 24(SP) |
|
MOVQ SI, 32(SP) |
|
MOVQ CX, 40(SP) |
|
CALL runtime·memmove(SB) |
|
|
|
// Restore local variables: unspill registers from the stack and |
|
// re-calculate R8-R13. |
|
MOVQ 24(SP), DI |
|
MOVQ 32(SP), SI |
|
MOVQ 40(SP), CX |
|
MOVQ dst_base+0(FP), R8 |
|
MOVQ dst_len+8(FP), R9 |
|
MOVQ R8, R10 |
|
ADDQ R9, R10 |
|
MOVQ src_base+24(FP), R11 |
|
MOVQ src_len+32(FP), R12 |
|
MOVQ R11, R13 |
|
ADDQ R12, R13 |
|
|
|
// d += length |
|
// s += length |
|
ADDQ CX, DI |
|
ADDQ CX, SI |
|
JMP loop |
|
|
|
tagLit60Plus: |
|
// !!! This fragment does the |
|
// |
|
// s += x - 58; if uint(s) > uint(len(src)) { etc } |
|
// |
|
// checks. In the asm version, we code it once instead of once per switch case. |
|
ADDQ CX, SI |
|
SUBQ $58, SI |
|
MOVQ SI, BX |
|
SUBQ R11, BX |
|
CMPQ BX, R12 |
|
JA errCorrupt |
|
|
|
// case x == 60: |
|
CMPL CX, $61 |
|
JEQ tagLit61 |
|
JA tagLit62Plus |
|
|
|
// x = uint32(src[s-1]) |
|
MOVBLZX -1(SI), CX |
|
JMP doLit |
|
|
|
tagLit61: |
|
// case x == 61: |
|
// x = uint32(src[s-2]) | uint32(src[s-1])<<8 |
|
MOVWLZX -2(SI), CX |
|
JMP doLit |
|
|
|
tagLit62Plus: |
|
CMPL CX, $62 |
|
JA tagLit63 |
|
|
|
// case x == 62: |
|
// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16 |
|
MOVWLZX -3(SI), CX |
|
MOVBLZX -1(SI), BX |
|
SHLL $16, BX |
|
ORL BX, CX |
|
JMP doLit |
|
|
|
tagLit63: |
|
// case x == 63: |
|
// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24 |
|
MOVL -4(SI), CX |
|
JMP doLit |
|
|
|
// The code above handles literal tags. |
|
// ---------------------------------------- |
|
// The code below handles copy tags. |
|
|
|
tagCopy2: |
|
// case tagCopy2: |
|
// s += 3 |
|
ADDQ $3, SI |
|
|
|
// if uint(s) > uint(len(src)) { etc } |
|
MOVQ SI, BX |
|
SUBQ R11, BX |
|
CMPQ BX, R12 |
|
JA errCorrupt |
|
|
|
// length = 1 + int(src[s-3])>>2 |
|
SHRQ $2, CX |
|
INCQ CX |
|
|
|
// offset = int(src[s-2]) | int(src[s-1])<<8 |
|
MOVWQZX -2(SI), DX |
|
JMP doCopy |
|
|
|
tagCopy: |
|
// We have a copy tag. We assume that: |
|
// - BX == src[s] & 0x03 |
|
// - CX == src[s] |
|
CMPQ BX, $2 |
|
JEQ tagCopy2 |
|
JA errUC4T |
|
|
|
// case tagCopy1: |
|
// s += 2 |
|
ADDQ $2, SI |
|
|
|
// if uint(s) > uint(len(src)) { etc } |
|
MOVQ SI, BX |
|
SUBQ R11, BX |
|
CMPQ BX, R12 |
|
JA errCorrupt |
|
|
|
// offset = int(src[s-2])&0xe0<<3 | int(src[s-1]) |
|
MOVQ CX, DX |
|
ANDQ $0xe0, DX |
|
SHLQ $3, DX |
|
MOVBQZX -1(SI), BX |
|
ORQ BX, DX |
|
|
|
// length = 4 + int(src[s-2])>>2&0x7 |
|
SHRQ $2, CX |
|
ANDQ $7, CX |
|
ADDQ $4, CX |
|
|
|
doCopy: |
|
// This is the end of the outer "switch", when we have a copy tag. |
|
// |
|
// We assume that: |
|
// - CX == length && CX > 0 |
|
// - DX == offset |
|
|
|
// if offset <= 0 { etc } |
|
CMPQ DX, $0 |
|
JLE errCorrupt |
|
|
|
// if d < offset { etc } |
|
MOVQ DI, BX |
|
SUBQ R8, BX |
|
CMPQ BX, DX |
|
JLT errCorrupt |
|
|
|
// if length > len(dst)-d { etc } |
|
MOVQ R10, BX |
|
SUBQ DI, BX |
|
CMPQ CX, BX |
|
JGT errCorrupt |
|
|
|
// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length |
|
// |
|
// Set: |
|
// - R14 = len(dst)-d |
|
// - R15 = &dst[d-offset] |
|
MOVQ R10, R14 |
|
SUBQ DI, R14 |
|
MOVQ DI, R15 |
|
SUBQ DX, R15 |
|
|
|
// !!! Try a faster technique for short (16 or fewer bytes) forward copies. |
|
// |
|
// First, try using two 8-byte load/stores, similar to the doLit technique |
|
// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is |
|
// still OK if offset >= 8. Note that this has to be two 8-byte load/stores |
|
// and not one 16-byte load/store, and the first store has to be before the |
|
// second load, due to the overlap if offset is in the range [8, 16). |
|
// |
|
// if length > 16 || offset < 8 || len(dst)-d < 16 { |
|
// goto slowForwardCopy |
|
// } |
|
// copy 16 bytes |
|
// d += length |
|
CMPQ CX, $16 |
|
JGT slowForwardCopy |
|
CMPQ DX, $8 |
|
JLT slowForwardCopy |
|
CMPQ R14, $16 |
|
JLT slowForwardCopy |
|
MOVQ 0(R15), AX |
|
MOVQ AX, 0(DI) |
|
MOVQ 8(R15), BX |
|
MOVQ BX, 8(DI) |
|
ADDQ CX, DI |
|
JMP loop |
|
|
|
slowForwardCopy: |
|
// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we |
|
// can still try 8-byte load stores, provided we can overrun up to 10 extra |
|
// bytes. As above, the overrun will be fixed up by subsequent iterations |
|
// of the outermost loop. |
|
// |
|
// The C++ snappy code calls this technique IncrementalCopyFastPath. Its |
|
// commentary says: |
|
// |
|
// ---- |
|
// |
|
// The main part of this loop is a simple copy of eight bytes at a time |
|
// until we've copied (at least) the requested amount of bytes. However, |
|
// if d and d-offset are less than eight bytes apart (indicating a |
|
// repeating pattern of length < 8), we first need to expand the pattern in |
|
// order to get the correct results. For instance, if the buffer looks like |
|
// this, with the eight-byte <d-offset> and <d> patterns marked as |
|
// intervals: |
|
// |
|
// abxxxxxxxxxxxx |
|
// [------] d-offset |
|
// [------] d |
|
// |
|
// a single eight-byte copy from <d-offset> to <d> will repeat the pattern |
|
// once, after which we can move <d> two bytes without moving <d-offset>: |
|
// |
|
// ababxxxxxxxxxx |
|
// [------] d-offset |
|
// [------] d |
|
// |
|
// and repeat the exercise until the two no longer overlap. |
|
// |
|
// This allows us to do very well in the special case of one single byte |
|
// repeated many times, without taking a big hit for more general cases. |
|
// |
|
// The worst case of extra writing past the end of the match occurs when |
|
// offset == 1 and length == 1; the last copy will read from byte positions |
|
// [0..7] and write to [4..11], whereas it was only supposed to write to |
|
// position 1. Thus, ten excess bytes. |
|
// |
|
// ---- |
|
// |
|
// That "10 byte overrun" worst case is confirmed by Go's |
|
// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy |
|
// and finishSlowForwardCopy algorithm. |
|
// |
|
// if length > len(dst)-d-10 { |
|
// goto verySlowForwardCopy |
|
// } |
|
SUBQ $10, R14 |
|
CMPQ CX, R14 |
|
JGT verySlowForwardCopy |
|
|
|
makeOffsetAtLeast8: |
|
// !!! As above, expand the pattern so that offset >= 8 and we can use |
|
// 8-byte load/stores. |
|
// |
|
// for offset < 8 { |
|
// copy 8 bytes from dst[d-offset:] to dst[d:] |
|
// length -= offset |
|
// d += offset |
|
// offset += offset |
|
// // The two previous lines together means that d-offset, and therefore |
|
// // R15, is unchanged. |
|
// } |
|
CMPQ DX, $8 |
|
JGE fixUpSlowForwardCopy |
|
MOVQ (R15), BX |
|
MOVQ BX, (DI) |
|
SUBQ DX, CX |
|
ADDQ DX, DI |
|
ADDQ DX, DX |
|
JMP makeOffsetAtLeast8 |
|
|
|
fixUpSlowForwardCopy: |
|
// !!! Add length (which might be negative now) to d (implied by DI being |
|
// &dst[d]) so that d ends up at the right place when we jump back to the |
|
// top of the loop. Before we do that, though, we save DI to AX so that, if |
|
// length is positive, copying the remaining length bytes will write to the |
|
// right place. |
|
MOVQ DI, AX |
|
ADDQ CX, DI |
|
|
|
finishSlowForwardCopy: |
|
// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative |
|
// length means that we overrun, but as above, that will be fixed up by |
|
// subsequent iterations of the outermost loop. |
|
CMPQ CX, $0 |
|
JLE loop |
|
MOVQ (R15), BX |
|
MOVQ BX, (AX) |
|
ADDQ $8, R15 |
|
ADDQ $8, AX |
|
SUBQ $8, CX |
|
JMP finishSlowForwardCopy |
|
|
|
verySlowForwardCopy: |
|
// verySlowForwardCopy is a simple implementation of forward copy. In C |
|
// parlance, this is a do/while loop instead of a while loop, since we know |
|
// that length > 0. In Go syntax: |
|
// |
|
// for { |
|
// dst[d] = dst[d - offset] |
|
// d++ |
|
// length-- |
|
// if length == 0 { |
|
// break |
|
// } |
|
// } |
|
MOVB (R15), BX |
|
MOVB BX, (DI) |
|
INCQ R15 |
|
INCQ DI |
|
DECQ CX |
|
JNZ verySlowForwardCopy |
|
JMP loop |
|
|
|
// The code above handles copy tags. |
|
// ---------------------------------------- |
|
|
|
end: |
|
// This is the end of the "for s < len(src)". |
|
// |
|
// if d != len(dst) { etc } |
|
CMPQ DI, R10 |
|
JNE errCorrupt |
|
|
|
// return 0 |
|
MOVQ $0, ret+48(FP) |
|
RET |
|
|
|
errCorrupt: |
|
// return decodeErrCodeCorrupt |
|
MOVQ $1, ret+48(FP) |
|
RET |
|
|
|
errUC4T: |
|
// return decodeErrCodeUnsupportedCopy4Tag |
|
MOVQ $3, ret+48(FP) |
|
RET
|
|
|