Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
837 lines
21 KiB
837 lines
21 KiB
// Copyright 2019+ Klaus Post. All rights reserved. |
|
// License information can be found in the LICENSE file. |
|
// Based on work by Yann Collet, released under BSD License. |
|
|
|
package zstd |
|
|
|
import ( |
|
"errors" |
|
"fmt" |
|
"math" |
|
"math/bits" |
|
|
|
"github.com/klauspost/compress/huff0" |
|
) |
|
|
|
type blockEnc struct { |
|
size int |
|
literals []byte |
|
sequences []seq |
|
coders seqCoders |
|
litEnc *huff0.Scratch |
|
wr bitWriter |
|
|
|
extraLits int |
|
last bool |
|
|
|
output []byte |
|
recentOffsets [3]uint32 |
|
prevRecentOffsets [3]uint32 |
|
} |
|
|
|
// init should be used once the block has been created. |
|
// If called more than once, the effect is the same as calling reset. |
|
func (b *blockEnc) init() { |
|
if cap(b.literals) < maxCompressedLiteralSize { |
|
b.literals = make([]byte, 0, maxCompressedLiteralSize) |
|
} |
|
const defSeqs = 200 |
|
b.literals = b.literals[:0] |
|
if cap(b.sequences) < defSeqs { |
|
b.sequences = make([]seq, 0, defSeqs) |
|
} |
|
if cap(b.output) < maxCompressedBlockSize { |
|
b.output = make([]byte, 0, maxCompressedBlockSize) |
|
} |
|
if b.coders.mlEnc == nil { |
|
b.coders.mlEnc = &fseEncoder{} |
|
b.coders.mlPrev = &fseEncoder{} |
|
b.coders.ofEnc = &fseEncoder{} |
|
b.coders.ofPrev = &fseEncoder{} |
|
b.coders.llEnc = &fseEncoder{} |
|
b.coders.llPrev = &fseEncoder{} |
|
} |
|
b.litEnc = &huff0.Scratch{WantLogLess: 4} |
|
b.reset(nil) |
|
} |
|
|
|
// initNewEncode can be used to reset offsets and encoders to the initial state. |
|
func (b *blockEnc) initNewEncode() { |
|
b.recentOffsets = [3]uint32{1, 4, 8} |
|
b.litEnc.Reuse = huff0.ReusePolicyNone |
|
b.coders.setPrev(nil, nil, nil) |
|
} |
|
|
|
// reset will reset the block for a new encode, but in the same stream, |
|
// meaning that state will be carried over, but the block content is reset. |
|
// If a previous block is provided, the recent offsets are carried over. |
|
func (b *blockEnc) reset(prev *blockEnc) { |
|
b.extraLits = 0 |
|
b.literals = b.literals[:0] |
|
b.size = 0 |
|
b.sequences = b.sequences[:0] |
|
b.output = b.output[:0] |
|
b.last = false |
|
if prev != nil { |
|
b.recentOffsets = prev.prevRecentOffsets |
|
} |
|
} |
|
|
|
// reset will reset the block for a new encode, but in the same stream, |
|
// meaning that state will be carried over, but the block content is reset. |
|
// If a previous block is provided, the recent offsets are carried over. |
|
func (b *blockEnc) swapEncoders(prev *blockEnc) { |
|
b.coders.swap(&prev.coders) |
|
b.litEnc, prev.litEnc = prev.litEnc, b.litEnc |
|
} |
|
|
|
// blockHeader contains the information for a block header. |
|
type blockHeader uint32 |
|
|
|
// setLast sets the 'last' indicator on a block. |
|
func (h *blockHeader) setLast(b bool) { |
|
if b { |
|
*h = *h | 1 |
|
} else { |
|
const mask = (1 << 24) - 2 |
|
*h = *h & mask |
|
} |
|
} |
|
|
|
// setSize will store the compressed size of a block. |
|
func (h *blockHeader) setSize(v uint32) { |
|
const mask = 7 |
|
*h = (*h)&mask | blockHeader(v<<3) |
|
} |
|
|
|
// setType sets the block type. |
|
func (h *blockHeader) setType(t blockType) { |
|
const mask = 1 | (((1 << 24) - 1) ^ 7) |
|
*h = (*h & mask) | blockHeader(t<<1) |
|
} |
|
|
|
// appendTo will append the block header to a slice. |
|
func (h blockHeader) appendTo(b []byte) []byte { |
|
return append(b, uint8(h), uint8(h>>8), uint8(h>>16)) |
|
} |
|
|
|
// String returns a string representation of the block. |
|
func (h blockHeader) String() string { |
|
return fmt.Sprintf("Type: %d, Size: %d, Last:%t", (h>>1)&3, h>>3, h&1 == 1) |
|
} |
|
|
|
// literalsHeader contains literals header information. |
|
type literalsHeader uint64 |
|
|
|
// setType can be used to set the type of literal block. |
|
func (h *literalsHeader) setType(t literalsBlockType) { |
|
const mask = math.MaxUint64 - 3 |
|
*h = (*h & mask) | literalsHeader(t) |
|
} |
|
|
|
// setSize can be used to set a single size, for uncompressed and RLE content. |
|
func (h *literalsHeader) setSize(regenLen int) { |
|
inBits := bits.Len32(uint32(regenLen)) |
|
// Only retain 2 bits |
|
const mask = 3 |
|
lh := uint64(*h & mask) |
|
switch { |
|
case inBits < 5: |
|
lh |= (uint64(regenLen) << 3) | (1 << 60) |
|
if debug { |
|
got := int(lh>>3) & 0xff |
|
if got != regenLen { |
|
panic(fmt.Sprint("litRegenSize = ", regenLen, "(want) != ", got, "(got)")) |
|
} |
|
} |
|
case inBits < 12: |
|
lh |= (1 << 2) | (uint64(regenLen) << 4) | (2 << 60) |
|
case inBits < 20: |
|
lh |= (3 << 2) | (uint64(regenLen) << 4) | (3 << 60) |
|
default: |
|
panic(fmt.Errorf("internal error: block too big (%d)", regenLen)) |
|
} |
|
*h = literalsHeader(lh) |
|
} |
|
|
|
// setSizes will set the size of a compressed literals section and the input length. |
|
func (h *literalsHeader) setSizes(compLen, inLen int, single bool) { |
|
compBits, inBits := bits.Len32(uint32(compLen)), bits.Len32(uint32(inLen)) |
|
// Only retain 2 bits |
|
const mask = 3 |
|
lh := uint64(*h & mask) |
|
switch { |
|
case compBits <= 10 && inBits <= 10: |
|
if !single { |
|
lh |= 1 << 2 |
|
} |
|
lh |= (uint64(inLen) << 4) | (uint64(compLen) << (10 + 4)) | (3 << 60) |
|
if debug { |
|
const mmask = (1 << 24) - 1 |
|
n := (lh >> 4) & mmask |
|
if int(n&1023) != inLen { |
|
panic(fmt.Sprint("regensize:", int(n&1023), "!=", inLen, inBits)) |
|
} |
|
if int(n>>10) != compLen { |
|
panic(fmt.Sprint("compsize:", int(n>>10), "!=", compLen, compBits)) |
|
} |
|
} |
|
case compBits <= 14 && inBits <= 14: |
|
lh |= (2 << 2) | (uint64(inLen) << 4) | (uint64(compLen) << (14 + 4)) | (4 << 60) |
|
if single { |
|
panic("single stream used with more than 10 bits length.") |
|
} |
|
case compBits <= 18 && inBits <= 18: |
|
lh |= (3 << 2) | (uint64(inLen) << 4) | (uint64(compLen) << (18 + 4)) | (5 << 60) |
|
if single { |
|
panic("single stream used with more than 10 bits length.") |
|
} |
|
default: |
|
panic("internal error: block too big") |
|
} |
|
*h = literalsHeader(lh) |
|
} |
|
|
|
// appendTo will append the literals header to a byte slice. |
|
func (h literalsHeader) appendTo(b []byte) []byte { |
|
size := uint8(h >> 60) |
|
switch size { |
|
case 1: |
|
b = append(b, uint8(h)) |
|
case 2: |
|
b = append(b, uint8(h), uint8(h>>8)) |
|
case 3: |
|
b = append(b, uint8(h), uint8(h>>8), uint8(h>>16)) |
|
case 4: |
|
b = append(b, uint8(h), uint8(h>>8), uint8(h>>16), uint8(h>>24)) |
|
case 5: |
|
b = append(b, uint8(h), uint8(h>>8), uint8(h>>16), uint8(h>>24), uint8(h>>32)) |
|
default: |
|
panic(fmt.Errorf("internal error: literalsHeader has invalid size (%d)", size)) |
|
} |
|
return b |
|
} |
|
|
|
// size returns the output size with currently set values. |
|
func (h literalsHeader) size() int { |
|
return int(h >> 60) |
|
} |
|
|
|
func (h literalsHeader) String() string { |
|
return fmt.Sprintf("Type: %d, SizeFormat: %d, Size: 0x%d, Bytes:%d", literalsBlockType(h&3), (h>>2)&3, h&((1<<60)-1)>>4, h>>60) |
|
} |
|
|
|
// pushOffsets will push the recent offsets to the backup store. |
|
func (b *blockEnc) pushOffsets() { |
|
b.prevRecentOffsets = b.recentOffsets |
|
} |
|
|
|
// pushOffsets will push the recent offsets to the backup store. |
|
func (b *blockEnc) popOffsets() { |
|
b.recentOffsets = b.prevRecentOffsets |
|
} |
|
|
|
// matchOffset will adjust recent offsets and return the adjusted one, |
|
// if it matches a previous offset. |
|
func (b *blockEnc) matchOffset(offset, lits uint32) uint32 { |
|
// Check if offset is one of the recent offsets. |
|
// Adjusts the output offset accordingly. |
|
// Gives a tiny bit of compression, typically around 1%. |
|
if true { |
|
if lits > 0 { |
|
switch offset { |
|
case b.recentOffsets[0]: |
|
offset = 1 |
|
case b.recentOffsets[1]: |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset = 2 |
|
case b.recentOffsets[2]: |
|
b.recentOffsets[2] = b.recentOffsets[1] |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset = 3 |
|
default: |
|
b.recentOffsets[2] = b.recentOffsets[1] |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset += 3 |
|
} |
|
} else { |
|
switch offset { |
|
case b.recentOffsets[1]: |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset = 1 |
|
case b.recentOffsets[2]: |
|
b.recentOffsets[2] = b.recentOffsets[1] |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset = 2 |
|
case b.recentOffsets[0] - 1: |
|
b.recentOffsets[2] = b.recentOffsets[1] |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset = 3 |
|
default: |
|
b.recentOffsets[2] = b.recentOffsets[1] |
|
b.recentOffsets[1] = b.recentOffsets[0] |
|
b.recentOffsets[0] = offset |
|
offset += 3 |
|
} |
|
} |
|
} else { |
|
offset += 3 |
|
} |
|
return offset |
|
} |
|
|
|
// encodeRaw can be used to set the output to a raw representation of supplied bytes. |
|
func (b *blockEnc) encodeRaw(a []byte) { |
|
var bh blockHeader |
|
bh.setLast(b.last) |
|
bh.setSize(uint32(len(a))) |
|
bh.setType(blockTypeRaw) |
|
b.output = bh.appendTo(b.output[:0]) |
|
b.output = append(b.output, a...) |
|
if debug { |
|
println("Adding RAW block, length", len(a)) |
|
} |
|
} |
|
|
|
// encodeRaw can be used to set the output to a raw representation of supplied bytes. |
|
func (b *blockEnc) encodeRawTo(dst, src []byte) []byte { |
|
var bh blockHeader |
|
bh.setLast(b.last) |
|
bh.setSize(uint32(len(src))) |
|
bh.setType(blockTypeRaw) |
|
dst = bh.appendTo(dst) |
|
dst = append(dst, src...) |
|
if debug { |
|
println("Adding RAW block, length", len(src)) |
|
} |
|
return dst |
|
} |
|
|
|
// encodeLits can be used if the block is only litLen. |
|
func (b *blockEnc) encodeLits(raw bool) error { |
|
var bh blockHeader |
|
bh.setLast(b.last) |
|
bh.setSize(uint32(len(b.literals))) |
|
|
|
// Don't compress extremely small blocks |
|
if len(b.literals) < 32 || raw { |
|
if debug { |
|
println("Adding RAW block, length", len(b.literals)) |
|
} |
|
bh.setType(blockTypeRaw) |
|
b.output = bh.appendTo(b.output) |
|
b.output = append(b.output, b.literals...) |
|
return nil |
|
} |
|
|
|
var ( |
|
out []byte |
|
reUsed, single bool |
|
err error |
|
) |
|
if len(b.literals) >= 1024 { |
|
// Use 4 Streams. |
|
out, reUsed, err = huff0.Compress4X(b.literals, b.litEnc) |
|
} else if len(b.literals) > 32 { |
|
// Use 1 stream |
|
single = true |
|
out, reUsed, err = huff0.Compress1X(b.literals, b.litEnc) |
|
} else { |
|
err = huff0.ErrIncompressible |
|
} |
|
|
|
switch err { |
|
case huff0.ErrIncompressible: |
|
if debug { |
|
println("Adding RAW block, length", len(b.literals)) |
|
} |
|
bh.setType(blockTypeRaw) |
|
b.output = bh.appendTo(b.output) |
|
b.output = append(b.output, b.literals...) |
|
return nil |
|
case huff0.ErrUseRLE: |
|
if debug { |
|
println("Adding RLE block, length", len(b.literals)) |
|
} |
|
bh.setType(blockTypeRLE) |
|
b.output = bh.appendTo(b.output) |
|
b.output = append(b.output, b.literals[0]) |
|
return nil |
|
default: |
|
return err |
|
case nil: |
|
} |
|
// Compressed... |
|
// Now, allow reuse |
|
b.litEnc.Reuse = huff0.ReusePolicyAllow |
|
bh.setType(blockTypeCompressed) |
|
var lh literalsHeader |
|
if reUsed { |
|
if debug { |
|
println("Reused tree, compressed to", len(out)) |
|
} |
|
lh.setType(literalsBlockTreeless) |
|
} else { |
|
if debug { |
|
println("New tree, compressed to", len(out), "tree size:", len(b.litEnc.OutTable)) |
|
} |
|
lh.setType(literalsBlockCompressed) |
|
} |
|
// Set sizes |
|
lh.setSizes(len(out), len(b.literals), single) |
|
bh.setSize(uint32(len(out) + lh.size() + 1)) |
|
|
|
// Write block headers. |
|
b.output = bh.appendTo(b.output) |
|
b.output = lh.appendTo(b.output) |
|
// Add compressed data. |
|
b.output = append(b.output, out...) |
|
// No sequences. |
|
b.output = append(b.output, 0) |
|
return nil |
|
} |
|
|
|
// fuzzFseEncoder can be used to fuzz the FSE encoder. |
|
func fuzzFseEncoder(data []byte) int { |
|
if len(data) > maxSequences || len(data) < 2 { |
|
return 0 |
|
} |
|
enc := fseEncoder{} |
|
hist := enc.Histogram()[:256] |
|
maxSym := uint8(0) |
|
for i, v := range data { |
|
v = v & 63 |
|
data[i] = v |
|
hist[v]++ |
|
if v > maxSym { |
|
maxSym = v |
|
} |
|
} |
|
if maxSym == 0 { |
|
// All 0 |
|
return 0 |
|
} |
|
maxCount := func(a []uint32) int { |
|
var max uint32 |
|
for _, v := range a { |
|
if v > max { |
|
max = v |
|
} |
|
} |
|
return int(max) |
|
} |
|
cnt := maxCount(hist[:maxSym]) |
|
if cnt == len(data) { |
|
// RLE |
|
return 0 |
|
} |
|
enc.HistogramFinished(maxSym, cnt) |
|
err := enc.normalizeCount(len(data)) |
|
if err != nil { |
|
return 0 |
|
} |
|
_, err = enc.writeCount(nil) |
|
if err != nil { |
|
panic(err) |
|
} |
|
return 1 |
|
} |
|
|
|
// encode will encode the block and append the output in b.output. |
|
func (b *blockEnc) encode(raw bool) error { |
|
if len(b.sequences) == 0 { |
|
return b.encodeLits(raw) |
|
} |
|
// We want some difference |
|
if len(b.literals) > (b.size - (b.size >> 5)) { |
|
return errIncompressible |
|
} |
|
|
|
var bh blockHeader |
|
var lh literalsHeader |
|
bh.setLast(b.last) |
|
bh.setType(blockTypeCompressed) |
|
// Store offset of the block header. Needed when we know the size. |
|
bhOffset := len(b.output) |
|
b.output = bh.appendTo(b.output) |
|
|
|
var ( |
|
out []byte |
|
reUsed, single bool |
|
err error |
|
) |
|
if len(b.literals) >= 1024 && !raw { |
|
// Use 4 Streams. |
|
out, reUsed, err = huff0.Compress4X(b.literals, b.litEnc) |
|
} else if len(b.literals) > 32 && !raw { |
|
// Use 1 stream |
|
single = true |
|
out, reUsed, err = huff0.Compress1X(b.literals, b.litEnc) |
|
} else { |
|
err = huff0.ErrIncompressible |
|
} |
|
|
|
switch err { |
|
case huff0.ErrIncompressible: |
|
lh.setType(literalsBlockRaw) |
|
lh.setSize(len(b.literals)) |
|
b.output = lh.appendTo(b.output) |
|
b.output = append(b.output, b.literals...) |
|
if debug { |
|
println("Adding literals RAW, length", len(b.literals)) |
|
} |
|
case huff0.ErrUseRLE: |
|
lh.setType(literalsBlockRLE) |
|
lh.setSize(len(b.literals)) |
|
b.output = lh.appendTo(b.output) |
|
b.output = append(b.output, b.literals[0]) |
|
if debug { |
|
println("Adding literals RLE") |
|
} |
|
default: |
|
if debug { |
|
println("Adding literals ERROR:", err) |
|
} |
|
return err |
|
case nil: |
|
// Compressed litLen... |
|
if reUsed { |
|
if debug { |
|
println("reused tree") |
|
} |
|
lh.setType(literalsBlockTreeless) |
|
} else { |
|
if debug { |
|
println("new tree, size:", len(b.litEnc.OutTable)) |
|
} |
|
lh.setType(literalsBlockCompressed) |
|
if debug { |
|
_, _, err := huff0.ReadTable(out, nil) |
|
if err != nil { |
|
panic(err) |
|
} |
|
} |
|
} |
|
lh.setSizes(len(out), len(b.literals), single) |
|
if debug { |
|
printf("Compressed %d literals to %d bytes", len(b.literals), len(out)) |
|
println("Adding literal header:", lh) |
|
} |
|
b.output = lh.appendTo(b.output) |
|
b.output = append(b.output, out...) |
|
b.litEnc.Reuse = huff0.ReusePolicyAllow |
|
if debug { |
|
println("Adding literals compressed") |
|
} |
|
} |
|
// Sequence compression |
|
|
|
// Write the number of sequences |
|
switch { |
|
case len(b.sequences) < 128: |
|
b.output = append(b.output, uint8(len(b.sequences))) |
|
case len(b.sequences) < 0x7f00: // TODO: this could be wrong |
|
n := len(b.sequences) |
|
b.output = append(b.output, 128+uint8(n>>8), uint8(n)) |
|
default: |
|
n := len(b.sequences) - 0x7f00 |
|
b.output = append(b.output, 255, uint8(n), uint8(n>>8)) |
|
} |
|
if debug { |
|
println("Encoding", len(b.sequences), "sequences") |
|
} |
|
b.genCodes() |
|
llEnc := b.coders.llEnc |
|
ofEnc := b.coders.ofEnc |
|
mlEnc := b.coders.mlEnc |
|
err = llEnc.normalizeCount(len(b.sequences)) |
|
if err != nil { |
|
return err |
|
} |
|
err = ofEnc.normalizeCount(len(b.sequences)) |
|
if err != nil { |
|
return err |
|
} |
|
err = mlEnc.normalizeCount(len(b.sequences)) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
// Choose the best compression mode for each type. |
|
// Will evaluate the new vs predefined and previous. |
|
chooseComp := func(cur, prev, preDef *fseEncoder) (*fseEncoder, seqCompMode) { |
|
// See if predefined/previous is better |
|
hist := cur.count[:cur.symbolLen] |
|
nSize := cur.approxSize(hist) + cur.maxHeaderSize() |
|
predefSize := preDef.approxSize(hist) |
|
prevSize := prev.approxSize(hist) |
|
|
|
// Add a small penalty for new encoders. |
|
// Don't bother with extremely small (<2 byte gains). |
|
nSize = nSize + (nSize+2*8*16)>>4 |
|
switch { |
|
case predefSize <= prevSize && predefSize <= nSize || forcePreDef: |
|
if debug { |
|
println("Using predefined", predefSize>>3, "<=", nSize>>3) |
|
} |
|
return preDef, compModePredefined |
|
case prevSize <= nSize: |
|
if debug { |
|
println("Using previous", prevSize>>3, "<=", nSize>>3) |
|
} |
|
return prev, compModeRepeat |
|
default: |
|
if debug { |
|
println("Using new, predef", predefSize>>3, ". previous:", prevSize>>3, ">", nSize>>3, "header max:", cur.maxHeaderSize()>>3, "bytes") |
|
println("tl:", cur.actualTableLog, "symbolLen:", cur.symbolLen, "norm:", cur.norm[:cur.symbolLen], "hist", cur.count[:cur.symbolLen]) |
|
} |
|
return cur, compModeFSE |
|
} |
|
} |
|
|
|
// Write compression mode |
|
var mode uint8 |
|
if llEnc.useRLE { |
|
mode |= uint8(compModeRLE) << 6 |
|
llEnc.setRLE(b.sequences[0].llCode) |
|
if debug { |
|
println("llEnc.useRLE") |
|
} |
|
} else { |
|
var m seqCompMode |
|
llEnc, m = chooseComp(llEnc, b.coders.llPrev, &fsePredefEnc[tableLiteralLengths]) |
|
mode |= uint8(m) << 6 |
|
} |
|
if ofEnc.useRLE { |
|
mode |= uint8(compModeRLE) << 4 |
|
ofEnc.setRLE(b.sequences[0].ofCode) |
|
if debug { |
|
println("ofEnc.useRLE") |
|
} |
|
} else { |
|
var m seqCompMode |
|
ofEnc, m = chooseComp(ofEnc, b.coders.ofPrev, &fsePredefEnc[tableOffsets]) |
|
mode |= uint8(m) << 4 |
|
} |
|
|
|
if mlEnc.useRLE { |
|
mode |= uint8(compModeRLE) << 2 |
|
mlEnc.setRLE(b.sequences[0].mlCode) |
|
if debug { |
|
println("mlEnc.useRLE, code: ", b.sequences[0].mlCode, "value", b.sequences[0].matchLen) |
|
} |
|
} else { |
|
var m seqCompMode |
|
mlEnc, m = chooseComp(mlEnc, b.coders.mlPrev, &fsePredefEnc[tableMatchLengths]) |
|
mode |= uint8(m) << 2 |
|
} |
|
b.output = append(b.output, mode) |
|
if debug { |
|
printf("Compression modes: 0b%b", mode) |
|
} |
|
b.output, err = llEnc.writeCount(b.output) |
|
if err != nil { |
|
return err |
|
} |
|
start := len(b.output) |
|
b.output, err = ofEnc.writeCount(b.output) |
|
if err != nil { |
|
return err |
|
} |
|
if false { |
|
println("block:", b.output[start:], "tablelog", ofEnc.actualTableLog, "maxcount:", ofEnc.maxCount) |
|
fmt.Printf("selected TableLog: %d, Symbol length: %d\n", ofEnc.actualTableLog, ofEnc.symbolLen) |
|
for i, v := range ofEnc.norm[:ofEnc.symbolLen] { |
|
fmt.Printf("%3d: %5d -> %4d \n", i, ofEnc.count[i], v) |
|
} |
|
} |
|
b.output, err = mlEnc.writeCount(b.output) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
// Maybe in block? |
|
wr := &b.wr |
|
wr.reset(b.output) |
|
|
|
var ll, of, ml cState |
|
|
|
// Current sequence |
|
seq := len(b.sequences) - 1 |
|
s := b.sequences[seq] |
|
llEnc.setBits(llBitsTable[:]) |
|
mlEnc.setBits(mlBitsTable[:]) |
|
ofEnc.setBits(nil) |
|
|
|
llTT, ofTT, mlTT := llEnc.ct.symbolTT[:256], ofEnc.ct.symbolTT[:256], mlEnc.ct.symbolTT[:256] |
|
|
|
// We have 3 bounds checks here (and in the loop). |
|
// Since we are iterating backwards it is kinda hard to avoid. |
|
llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] |
|
ll.init(wr, &llEnc.ct, llB) |
|
of.init(wr, &ofEnc.ct, ofB) |
|
wr.flush32() |
|
ml.init(wr, &mlEnc.ct, mlB) |
|
|
|
// Each of these lookups also generates a bounds check. |
|
wr.addBits32NC(s.litLen, llB.outBits) |
|
wr.addBits32NC(s.matchLen, mlB.outBits) |
|
wr.flush32() |
|
wr.addBits32NC(s.offset, ofB.outBits) |
|
if debugSequences { |
|
println("Encoded seq", seq, s, "codes:", s.llCode, s.mlCode, s.ofCode, "states:", ll.state, ml.state, of.state, "bits:", llB, mlB, ofB) |
|
} |
|
seq-- |
|
if llEnc.maxBits+mlEnc.maxBits+ofEnc.maxBits <= 32 { |
|
// No need to flush (common) |
|
for seq >= 0 { |
|
s = b.sequences[seq] |
|
wr.flush32() |
|
llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] |
|
// tabelog max is 8 for all. |
|
of.encode(ofB) |
|
ml.encode(mlB) |
|
ll.encode(llB) |
|
wr.flush32() |
|
|
|
// We checked that all can stay within 32 bits |
|
wr.addBits32NC(s.litLen, llB.outBits) |
|
wr.addBits32NC(s.matchLen, mlB.outBits) |
|
wr.addBits32NC(s.offset, ofB.outBits) |
|
|
|
if debugSequences { |
|
println("Encoded seq", seq, s) |
|
} |
|
|
|
seq-- |
|
} |
|
} else { |
|
for seq >= 0 { |
|
s = b.sequences[seq] |
|
wr.flush32() |
|
llB, ofB, mlB := llTT[s.llCode], ofTT[s.ofCode], mlTT[s.mlCode] |
|
// tabelog max is below 8 for each. |
|
of.encode(ofB) |
|
ml.encode(mlB) |
|
ll.encode(llB) |
|
wr.flush32() |
|
|
|
// ml+ll = max 32 bits total |
|
wr.addBits32NC(s.litLen, llB.outBits) |
|
wr.addBits32NC(s.matchLen, mlB.outBits) |
|
wr.flush32() |
|
wr.addBits32NC(s.offset, ofB.outBits) |
|
|
|
if debugSequences { |
|
println("Encoded seq", seq, s) |
|
} |
|
|
|
seq-- |
|
} |
|
} |
|
ml.flush(mlEnc.actualTableLog) |
|
of.flush(ofEnc.actualTableLog) |
|
ll.flush(llEnc.actualTableLog) |
|
err = wr.close() |
|
if err != nil { |
|
return err |
|
} |
|
b.output = wr.out |
|
|
|
if len(b.output)-3-bhOffset >= b.size { |
|
// Maybe even add a bigger margin. |
|
b.litEnc.Reuse = huff0.ReusePolicyNone |
|
return errIncompressible |
|
} |
|
|
|
// Size is output minus block header. |
|
bh.setSize(uint32(len(b.output)-bhOffset) - 3) |
|
if debug { |
|
println("Rewriting block header", bh) |
|
} |
|
_ = bh.appendTo(b.output[bhOffset:bhOffset]) |
|
b.coders.setPrev(llEnc, mlEnc, ofEnc) |
|
return nil |
|
} |
|
|
|
var errIncompressible = errors.New("incompressible") |
|
|
|
func (b *blockEnc) genCodes() { |
|
if len(b.sequences) == 0 { |
|
// nothing to do |
|
return |
|
} |
|
|
|
if len(b.sequences) > math.MaxUint16 { |
|
panic("can only encode up to 64K sequences") |
|
} |
|
// No bounds checks after here: |
|
llH := b.coders.llEnc.Histogram()[:256] |
|
ofH := b.coders.ofEnc.Histogram()[:256] |
|
mlH := b.coders.mlEnc.Histogram()[:256] |
|
for i := range llH { |
|
llH[i] = 0 |
|
} |
|
for i := range ofH { |
|
ofH[i] = 0 |
|
} |
|
for i := range mlH { |
|
mlH[i] = 0 |
|
} |
|
|
|
var llMax, ofMax, mlMax uint8 |
|
for i, seq := range b.sequences { |
|
v := llCode(seq.litLen) |
|
seq.llCode = v |
|
llH[v]++ |
|
if v > llMax { |
|
llMax = v |
|
} |
|
|
|
v = ofCode(seq.offset) |
|
seq.ofCode = v |
|
ofH[v]++ |
|
if v > ofMax { |
|
ofMax = v |
|
} |
|
|
|
v = mlCode(seq.matchLen) |
|
seq.mlCode = v |
|
mlH[v]++ |
|
if v > mlMax { |
|
mlMax = v |
|
if debugAsserts && mlMax > maxMatchLengthSymbol { |
|
panic(fmt.Errorf("mlMax > maxMatchLengthSymbol (%d), matchlen: %d", mlMax, seq.matchLen)) |
|
} |
|
} |
|
b.sequences[i] = seq |
|
} |
|
maxCount := func(a []uint32) int { |
|
var max uint32 |
|
for _, v := range a { |
|
if v > max { |
|
max = v |
|
} |
|
} |
|
return int(max) |
|
} |
|
if debugAsserts && mlMax > maxMatchLengthSymbol { |
|
panic(fmt.Errorf("mlMax > maxMatchLengthSymbol (%d)", mlMax)) |
|
} |
|
if debugAsserts && ofMax > maxOffsetBits { |
|
panic(fmt.Errorf("ofMax > maxOffsetBits (%d)", ofMax)) |
|
} |
|
if debugAsserts && llMax > maxLiteralLengthSymbol { |
|
panic(fmt.Errorf("llMax > maxLiteralLengthSymbol (%d)", llMax)) |
|
} |
|
|
|
b.coders.mlEnc.HistogramFinished(mlMax, maxCount(mlH[:mlMax+1])) |
|
b.coders.ofEnc.HistogramFinished(ofMax, maxCount(ofH[:ofMax+1])) |
|
b.coders.llEnc.HistogramFinished(llMax, maxCount(llH[:llMax+1])) |
|
}
|
|
|