Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
646 lines
19 KiB
646 lines
19 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// Package rsa implements RSA encryption as specified in PKCS#1. |
|
// |
|
// RSA is a single, fundamental operation that is used in this package to |
|
// implement either public-key encryption or public-key signatures. |
|
// |
|
// The original specification for encryption and signatures with RSA is PKCS#1 |
|
// and the terms "RSA encryption" and "RSA signatures" by default refer to |
|
// PKCS#1 version 1.5. However, that specification has flaws and new designs |
|
// should use version two, usually called by just OAEP and PSS, where |
|
// possible. |
|
// |
|
// Two sets of interfaces are included in this package. When a more abstract |
|
// interface isn't neccessary, there are functions for encrypting/decrypting |
|
// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract |
|
// over the public-key primitive, the PrivateKey struct implements the |
|
// Decrypter and Signer interfaces from the crypto package. |
|
package rsa |
|
|
|
import ( |
|
"crypto" |
|
"crypto/rand" |
|
"crypto/subtle" |
|
"errors" |
|
"hash" |
|
"io" |
|
"math/big" |
|
) |
|
|
|
var bigZero = big.NewInt(0) |
|
var bigOne = big.NewInt(1) |
|
|
|
// A PublicKey represents the public part of an RSA key. |
|
type PublicKey struct { |
|
N *big.Int // modulus |
|
E int64 // public exponent |
|
} |
|
|
|
// OAEPOptions is an interface for passing options to OAEP decryption using the |
|
// crypto.Decrypter interface. |
|
type OAEPOptions struct { |
|
// Hash is the hash function that will be used when generating the mask. |
|
Hash crypto.Hash |
|
// Label is an arbitrary byte string that must be equal to the value |
|
// used when encrypting. |
|
Label []byte |
|
} |
|
|
|
var ( |
|
errPublicModulus = errors.New("crypto/rsa: missing public modulus") |
|
errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") |
|
errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") |
|
) |
|
|
|
// checkPub sanity checks the public key before we use it. |
|
// We require pub.E to fit into a 32-bit integer so that we |
|
// do not have different behavior depending on whether |
|
// int is 32 or 64 bits. See also |
|
// http://www.imperialviolet.org/2012/03/16/rsae.html. |
|
func checkPub(pub *PublicKey) error { |
|
if pub.N == nil { |
|
return errPublicModulus |
|
} |
|
if pub.E < 2 { |
|
return errPublicExponentSmall |
|
} |
|
if pub.E > 1<<63-1 { |
|
return errPublicExponentLarge |
|
} |
|
return nil |
|
} |
|
|
|
// A PrivateKey represents an RSA key |
|
type PrivateKey struct { |
|
PublicKey // public part. |
|
D *big.Int // private exponent |
|
Primes []*big.Int // prime factors of N, has >= 2 elements. |
|
|
|
// Precomputed contains precomputed values that speed up private |
|
// operations, if available. |
|
Precomputed PrecomputedValues |
|
} |
|
|
|
// Public returns the public key corresponding to priv. |
|
func (priv *PrivateKey) Public() crypto.PublicKey { |
|
return &priv.PublicKey |
|
} |
|
|
|
// Sign signs msg with priv, reading randomness from rand. If opts is a |
|
// *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will |
|
// be used. This method is intended to support keys where the private part is |
|
// kept in, for example, a hardware module. Common uses should use the Sign* |
|
// functions in this package. |
|
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { |
|
if pssOpts, ok := opts.(*PSSOptions); ok { |
|
return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts) |
|
} |
|
|
|
return SignPKCS1v15(rand, priv, opts.HashFunc(), msg) |
|
} |
|
|
|
// Decrypt decrypts ciphertext with priv. If opts is nil or of type |
|
// *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise |
|
// opts must have type *OAEPOptions and OAEP decryption is done. |
|
func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { |
|
if opts == nil { |
|
return DecryptPKCS1v15(rand, priv, ciphertext) |
|
} |
|
|
|
switch opts := opts.(type) { |
|
case *OAEPOptions: |
|
return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) |
|
|
|
case *PKCS1v15DecryptOptions: |
|
if l := opts.SessionKeyLen; l > 0 { |
|
plaintext = make([]byte, l) |
|
if _, err := io.ReadFull(rand, plaintext); err != nil { |
|
return nil, err |
|
} |
|
if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { |
|
return nil, err |
|
} |
|
return plaintext, nil |
|
} else { |
|
return DecryptPKCS1v15(rand, priv, ciphertext) |
|
} |
|
|
|
default: |
|
return nil, errors.New("crypto/rsa: invalid options for Decrypt") |
|
} |
|
} |
|
|
|
type PrecomputedValues struct { |
|
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) |
|
Qinv *big.Int // Q^-1 mod P |
|
|
|
// CRTValues is used for the 3rd and subsequent primes. Due to a |
|
// historical accident, the CRT for the first two primes is handled |
|
// differently in PKCS#1 and interoperability is sufficiently |
|
// important that we mirror this. |
|
CRTValues []CRTValue |
|
} |
|
|
|
// CRTValue contains the precomputed Chinese remainder theorem values. |
|
type CRTValue struct { |
|
Exp *big.Int // D mod (prime-1). |
|
Coeff *big.Int // R·Coeff ≡ 1 mod Prime. |
|
R *big.Int // product of primes prior to this (inc p and q). |
|
} |
|
|
|
// Validate performs basic sanity checks on the key. |
|
// It returns nil if the key is valid, or else an error describing a problem. |
|
func (priv *PrivateKey) Validate() error { |
|
if err := checkPub(&priv.PublicKey); err != nil { |
|
return err |
|
} |
|
|
|
// Check that Πprimes == n. |
|
modulus := new(big.Int).Set(bigOne) |
|
for _, prime := range priv.Primes { |
|
// Any primes ≤ 1 will cause divide-by-zero panics later. |
|
if prime.Cmp(bigOne) <= 0 { |
|
return errors.New("crypto/rsa: invalid prime value") |
|
} |
|
modulus.Mul(modulus, prime) |
|
} |
|
if modulus.Cmp(priv.N) != 0 { |
|
return errors.New("crypto/rsa: invalid modulus") |
|
} |
|
|
|
// Check that de ≡ 1 mod p-1, for each prime. |
|
// This implies that e is coprime to each p-1 as e has a multiplicative |
|
// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = |
|
// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 |
|
// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. |
|
congruence := new(big.Int) |
|
de := new(big.Int).SetInt64(int64(priv.E)) |
|
de.Mul(de, priv.D) |
|
for _, prime := range priv.Primes { |
|
pminus1 := new(big.Int).Sub(prime, bigOne) |
|
congruence.Mod(de, pminus1) |
|
if congruence.Cmp(bigOne) != 0 { |
|
return errors.New("crypto/rsa: invalid exponents") |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
// GenerateKey generates an RSA keypair of the given bit size using the |
|
// random source random (for example, crypto/rand.Reader). |
|
func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) { |
|
return GenerateMultiPrimeKey(random, 2, bits) |
|
} |
|
|
|
// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit |
|
// size and the given random source, as suggested in [1]. Although the public |
|
// keys are compatible (actually, indistinguishable) from the 2-prime case, |
|
// the private keys are not. Thus it may not be possible to export multi-prime |
|
// private keys in certain formats or to subsequently import them into other |
|
// code. |
|
// |
|
// Table 1 in [2] suggests maximum numbers of primes for a given size. |
|
// |
|
// [1] US patent 4405829 (1972, expired) |
|
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf |
|
func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) { |
|
priv = new(PrivateKey) |
|
priv.E = 65537 |
|
|
|
if nprimes < 2 { |
|
return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") |
|
} |
|
|
|
primes := make([]*big.Int, nprimes) |
|
|
|
NextSetOfPrimes: |
|
for { |
|
todo := bits |
|
// crypto/rand should set the top two bits in each prime. |
|
// Thus each prime has the form |
|
// p_i = 2^bitlen(p_i) × 0.11... (in base 2). |
|
// And the product is: |
|
// P = 2^todo × α |
|
// where α is the product of nprimes numbers of the form 0.11... |
|
// |
|
// If α < 1/2 (which can happen for nprimes > 2), we need to |
|
// shift todo to compensate for lost bits: the mean value of 0.11... |
|
// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 |
|
// will give good results. |
|
if nprimes >= 7 { |
|
todo += (nprimes - 2) / 5 |
|
} |
|
for i := 0; i < nprimes; i++ { |
|
primes[i], err = rand.Prime(random, todo/(nprimes-i)) |
|
if err != nil { |
|
return nil, err |
|
} |
|
todo -= primes[i].BitLen() |
|
} |
|
|
|
// Make sure that primes is pairwise unequal. |
|
for i, prime := range primes { |
|
for j := 0; j < i; j++ { |
|
if prime.Cmp(primes[j]) == 0 { |
|
continue NextSetOfPrimes |
|
} |
|
} |
|
} |
|
|
|
n := new(big.Int).Set(bigOne) |
|
totient := new(big.Int).Set(bigOne) |
|
pminus1 := new(big.Int) |
|
for _, prime := range primes { |
|
n.Mul(n, prime) |
|
pminus1.Sub(prime, bigOne) |
|
totient.Mul(totient, pminus1) |
|
} |
|
if n.BitLen() != bits { |
|
// This should never happen for nprimes == 2 because |
|
// crypto/rand should set the top two bits in each prime. |
|
// For nprimes > 2 we hope it does not happen often. |
|
continue NextSetOfPrimes |
|
} |
|
|
|
g := new(big.Int) |
|
priv.D = new(big.Int) |
|
y := new(big.Int) |
|
e := big.NewInt(int64(priv.E)) |
|
g.GCD(priv.D, y, e, totient) |
|
|
|
if g.Cmp(bigOne) == 0 { |
|
if priv.D.Sign() < 0 { |
|
priv.D.Add(priv.D, totient) |
|
} |
|
priv.Primes = primes |
|
priv.N = n |
|
|
|
break |
|
} |
|
} |
|
|
|
priv.Precompute() |
|
return |
|
} |
|
|
|
// incCounter increments a four byte, big-endian counter. |
|
func incCounter(c *[4]byte) { |
|
if c[3]++; c[3] != 0 { |
|
return |
|
} |
|
if c[2]++; c[2] != 0 { |
|
return |
|
} |
|
if c[1]++; c[1] != 0 { |
|
return |
|
} |
|
c[0]++ |
|
} |
|
|
|
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function |
|
// specified in PKCS#1 v2.1. |
|
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { |
|
var counter [4]byte |
|
var digest []byte |
|
|
|
done := 0 |
|
for done < len(out) { |
|
hash.Write(seed) |
|
hash.Write(counter[0:4]) |
|
digest = hash.Sum(digest[:0]) |
|
hash.Reset() |
|
|
|
for i := 0; i < len(digest) && done < len(out); i++ { |
|
out[done] ^= digest[i] |
|
done++ |
|
} |
|
incCounter(&counter) |
|
} |
|
} |
|
|
|
// ErrMessageTooLong is returned when attempting to encrypt a message which is |
|
// too large for the size of the public key. |
|
var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") |
|
|
|
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { |
|
e := big.NewInt(int64(pub.E)) |
|
c.Exp(m, e, pub.N) |
|
return c |
|
} |
|
|
|
// EncryptOAEP encrypts the given message with RSA-OAEP. |
|
// |
|
// OAEP is parameterised by a hash function that is used as a random oracle. |
|
// Encryption and decryption of a given message must use the same hash function |
|
// and sha256.New() is a reasonable choice. |
|
// |
|
// The random parameter is used as a source of entropy to ensure that |
|
// encrypting the same message twice doesn't result in the same ciphertext. |
|
// |
|
// The label parameter may contain arbitrary data that will not be encrypted, |
|
// but which gives important context to the message. For example, if a given |
|
// public key is used to decrypt two types of messages then distinct label |
|
// values could be used to ensure that a ciphertext for one purpose cannot be |
|
// used for another by an attacker. If not required it can be empty. |
|
// |
|
// The message must be no longer than the length of the public modulus less |
|
// twice the hash length plus 2. |
|
func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) { |
|
if err := checkPub(pub); err != nil { |
|
return nil, err |
|
} |
|
hash.Reset() |
|
k := (pub.N.BitLen() + 7) / 8 |
|
if len(msg) > k-2*hash.Size()-2 { |
|
err = ErrMessageTooLong |
|
return |
|
} |
|
|
|
hash.Write(label) |
|
lHash := hash.Sum(nil) |
|
hash.Reset() |
|
|
|
em := make([]byte, k) |
|
seed := em[1 : 1+hash.Size()] |
|
db := em[1+hash.Size():] |
|
|
|
copy(db[0:hash.Size()], lHash) |
|
db[len(db)-len(msg)-1] = 1 |
|
copy(db[len(db)-len(msg):], msg) |
|
|
|
_, err = io.ReadFull(random, seed) |
|
if err != nil { |
|
return |
|
} |
|
|
|
mgf1XOR(db, hash, seed) |
|
mgf1XOR(seed, hash, db) |
|
|
|
m := new(big.Int) |
|
m.SetBytes(em) |
|
c := encrypt(new(big.Int), pub, m) |
|
out = c.Bytes() |
|
|
|
if len(out) < k { |
|
// If the output is too small, we need to left-pad with zeros. |
|
t := make([]byte, k) |
|
copy(t[k-len(out):], out) |
|
out = t |
|
} |
|
|
|
return |
|
} |
|
|
|
// ErrDecryption represents a failure to decrypt a message. |
|
// It is deliberately vague to avoid adaptive attacks. |
|
var ErrDecryption = errors.New("crypto/rsa: decryption error") |
|
|
|
// ErrVerification represents a failure to verify a signature. |
|
// It is deliberately vague to avoid adaptive attacks. |
|
var ErrVerification = errors.New("crypto/rsa: verification error") |
|
|
|
// modInverse returns ia, the inverse of a in the multiplicative group of prime |
|
// order n. It requires that a be a member of the group (i.e. less than n). |
|
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { |
|
g := new(big.Int) |
|
x := new(big.Int) |
|
y := new(big.Int) |
|
g.GCD(x, y, a, n) |
|
if g.Cmp(bigOne) != 0 { |
|
// In this case, a and n aren't coprime and we cannot calculate |
|
// the inverse. This happens because the values of n are nearly |
|
// prime (being the product of two primes) rather than truly |
|
// prime. |
|
return |
|
} |
|
|
|
if x.Cmp(bigOne) < 0 { |
|
// 0 is not the multiplicative inverse of any element so, if x |
|
// < 1, then x is negative. |
|
x.Add(x, n) |
|
} |
|
|
|
return x, true |
|
} |
|
|
|
// Precompute performs some calculations that speed up private key operations |
|
// in the future. |
|
func (priv *PrivateKey) Precompute() { |
|
if priv.Precomputed.Dp != nil { |
|
return |
|
} |
|
|
|
priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) |
|
priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) |
|
|
|
priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) |
|
priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) |
|
|
|
priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) |
|
|
|
r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) |
|
priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) |
|
for i := 2; i < len(priv.Primes); i++ { |
|
prime := priv.Primes[i] |
|
values := &priv.Precomputed.CRTValues[i-2] |
|
|
|
values.Exp = new(big.Int).Sub(prime, bigOne) |
|
values.Exp.Mod(priv.D, values.Exp) |
|
|
|
values.R = new(big.Int).Set(r) |
|
values.Coeff = new(big.Int).ModInverse(r, prime) |
|
|
|
r.Mul(r, prime) |
|
} |
|
} |
|
|
|
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a |
|
// random source is given, RSA blinding is used. |
|
func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { |
|
// TODO(agl): can we get away with reusing blinds? |
|
if c.Cmp(priv.N) > 0 { |
|
err = ErrDecryption |
|
return |
|
} |
|
|
|
var ir *big.Int |
|
if random != nil { |
|
// Blinding enabled. Blinding involves multiplying c by r^e. |
|
// Then the decryption operation performs (m^e * r^e)^d mod n |
|
// which equals mr mod n. The factor of r can then be removed |
|
// by multiplying by the multiplicative inverse of r. |
|
|
|
var r *big.Int |
|
|
|
for { |
|
r, err = rand.Int(random, priv.N) |
|
if err != nil { |
|
return |
|
} |
|
if r.Cmp(bigZero) == 0 { |
|
r = bigOne |
|
} |
|
var ok bool |
|
ir, ok = modInverse(r, priv.N) |
|
if ok { |
|
break |
|
} |
|
} |
|
bigE := big.NewInt(int64(priv.E)) |
|
rpowe := new(big.Int).Exp(r, bigE, priv.N) |
|
cCopy := new(big.Int).Set(c) |
|
cCopy.Mul(cCopy, rpowe) |
|
cCopy.Mod(cCopy, priv.N) |
|
c = cCopy |
|
} |
|
|
|
if priv.Precomputed.Dp == nil { |
|
m = new(big.Int).Exp(c, priv.D, priv.N) |
|
} else { |
|
// We have the precalculated values needed for the CRT. |
|
m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) |
|
m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) |
|
m.Sub(m, m2) |
|
if m.Sign() < 0 { |
|
m.Add(m, priv.Primes[0]) |
|
} |
|
m.Mul(m, priv.Precomputed.Qinv) |
|
m.Mod(m, priv.Primes[0]) |
|
m.Mul(m, priv.Primes[1]) |
|
m.Add(m, m2) |
|
|
|
for i, values := range priv.Precomputed.CRTValues { |
|
prime := priv.Primes[2+i] |
|
m2.Exp(c, values.Exp, prime) |
|
m2.Sub(m2, m) |
|
m2.Mul(m2, values.Coeff) |
|
m2.Mod(m2, prime) |
|
if m2.Sign() < 0 { |
|
m2.Add(m2, prime) |
|
} |
|
m2.Mul(m2, values.R) |
|
m.Add(m, m2) |
|
} |
|
} |
|
|
|
if ir != nil { |
|
// Unblind. |
|
m.Mul(m, ir) |
|
m.Mod(m, priv.N) |
|
} |
|
|
|
return |
|
} |
|
|
|
func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { |
|
m, err = decrypt(random, priv, c) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
// In order to defend against errors in the CRT computation, m^e is |
|
// calculated, which should match the original ciphertext. |
|
check := encrypt(new(big.Int), &priv.PublicKey, m) |
|
if c.Cmp(check) != 0 { |
|
return nil, errors.New("rsa: internal error") |
|
} |
|
return m, nil |
|
} |
|
|
|
// DecryptOAEP decrypts ciphertext using RSA-OAEP. |
|
|
|
// OAEP is parameterised by a hash function that is used as a random oracle. |
|
// Encryption and decryption of a given message must use the same hash function |
|
// and sha256.New() is a reasonable choice. |
|
// |
|
// The random parameter, if not nil, is used to blind the private-key operation |
|
// and avoid timing side-channel attacks. Blinding is purely internal to this |
|
// function – the random data need not match that used when encrypting. |
|
// |
|
// The label parameter must match the value given when encrypting. See |
|
// EncryptOAEP for details. |
|
func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) { |
|
if err := checkPub(&priv.PublicKey); err != nil { |
|
return nil, err |
|
} |
|
k := (priv.N.BitLen() + 7) / 8 |
|
if len(ciphertext) > k || |
|
k < hash.Size()*2+2 { |
|
err = ErrDecryption |
|
return |
|
} |
|
|
|
c := new(big.Int).SetBytes(ciphertext) |
|
|
|
m, err := decrypt(random, priv, c) |
|
if err != nil { |
|
return |
|
} |
|
|
|
hash.Write(label) |
|
lHash := hash.Sum(nil) |
|
hash.Reset() |
|
|
|
// Converting the plaintext number to bytes will strip any |
|
// leading zeros so we may have to left pad. We do this unconditionally |
|
// to avoid leaking timing information. (Although we still probably |
|
// leak the number of leading zeros. It's not clear that we can do |
|
// anything about this.) |
|
em := leftPad(m.Bytes(), k) |
|
|
|
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) |
|
|
|
seed := em[1 : hash.Size()+1] |
|
db := em[hash.Size()+1:] |
|
|
|
mgf1XOR(seed, hash, db) |
|
mgf1XOR(db, hash, seed) |
|
|
|
lHash2 := db[0:hash.Size()] |
|
|
|
// We have to validate the plaintext in constant time in order to avoid |
|
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal |
|
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 |
|
// v2.0. In J. Kilian, editor, Advances in Cryptology. |
|
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) |
|
|
|
// The remainder of the plaintext must be zero or more 0x00, followed |
|
// by 0x01, followed by the message. |
|
// lookingForIndex: 1 iff we are still looking for the 0x01 |
|
// index: the offset of the first 0x01 byte |
|
// invalid: 1 iff we saw a non-zero byte before the 0x01. |
|
var lookingForIndex, index, invalid int |
|
lookingForIndex = 1 |
|
rest := db[hash.Size():] |
|
|
|
for i := 0; i < len(rest); i++ { |
|
equals0 := subtle.ConstantTimeByteEq(rest[i], 0) |
|
equals1 := subtle.ConstantTimeByteEq(rest[i], 1) |
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) |
|
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) |
|
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) |
|
} |
|
|
|
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { |
|
err = ErrDecryption |
|
return |
|
} |
|
|
|
msg = rest[index+1:] |
|
return |
|
} |
|
|
|
// leftPad returns a new slice of length size. The contents of input are right |
|
// aligned in the new slice. |
|
func leftPad(input []byte, size int) (out []byte) { |
|
n := len(input) |
|
if n > size { |
|
n = size |
|
} |
|
out = make([]byte, size) |
|
copy(out[len(out)-n:], input) |
|
return |
|
}
|
|
|