Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
685 lines
24 KiB
685 lines
24 KiB
package brotli |
|
|
|
import "encoding/binary" |
|
|
|
/* Copyright 2015 Google Inc. All Rights Reserved. |
|
|
|
Distributed under MIT license. |
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
|
*/ |
|
|
|
/* Function for fast encoding of an input fragment, independently from the input |
|
history. This function uses one-pass processing: when we find a backward |
|
match, we immediately emit the corresponding command and literal codes to |
|
the bit stream. |
|
|
|
Adapted from the CompressFragment() function in |
|
https://github.com/google/snappy/blob/master/snappy.cc */ |
|
|
|
const maxDistance_compress_fragment = 262128 |
|
|
|
func hash5(p []byte, shift uint) uint32 { |
|
var h uint64 = (binary.LittleEndian.Uint64(p) << 24) * uint64(kHashMul32) |
|
return uint32(h >> shift) |
|
} |
|
|
|
func hashBytesAtOffset5(v uint64, offset int, shift uint) uint32 { |
|
assert(offset >= 0) |
|
assert(offset <= 3) |
|
{ |
|
var h uint64 = ((v >> uint(8*offset)) << 24) * uint64(kHashMul32) |
|
return uint32(h >> shift) |
|
} |
|
} |
|
|
|
func isMatch5(p1 []byte, p2 []byte) bool { |
|
return binary.LittleEndian.Uint32(p1) == binary.LittleEndian.Uint32(p2) && |
|
p1[4] == p2[4] |
|
} |
|
|
|
/* Builds a literal prefix code into "depths" and "bits" based on the statistics |
|
of the "input" string and stores it into the bit stream. |
|
Note that the prefix code here is built from the pre-LZ77 input, therefore |
|
we can only approximate the statistics of the actual literal stream. |
|
Moreover, for long inputs we build a histogram from a sample of the input |
|
and thus have to assign a non-zero depth for each literal. |
|
Returns estimated compression ratio millibytes/char for encoding given input |
|
with generated code. */ |
|
func buildAndStoreLiteralPrefixCode(input []byte, input_size uint, depths []byte, bits []uint16, bw *bitWriter) uint { |
|
var histogram = [256]uint32{0} |
|
var histogram_total uint |
|
var i uint |
|
if input_size < 1<<15 { |
|
for i = 0; i < input_size; i++ { |
|
histogram[input[i]]++ |
|
} |
|
|
|
histogram_total = input_size |
|
for i = 0; i < 256; i++ { |
|
/* We weigh the first 11 samples with weight 3 to account for the |
|
balancing effect of the LZ77 phase on the histogram. */ |
|
var adjust uint32 = 2 * brotli_min_uint32_t(histogram[i], 11) |
|
histogram[i] += adjust |
|
histogram_total += uint(adjust) |
|
} |
|
} else { |
|
const kSampleRate uint = 29 |
|
for i = 0; i < input_size; i += kSampleRate { |
|
histogram[input[i]]++ |
|
} |
|
|
|
histogram_total = (input_size + kSampleRate - 1) / kSampleRate |
|
for i = 0; i < 256; i++ { |
|
/* We add 1 to each population count to avoid 0 bit depths (since this is |
|
only a sample and we don't know if the symbol appears or not), and we |
|
weigh the first 11 samples with weight 3 to account for the balancing |
|
effect of the LZ77 phase on the histogram (more frequent symbols are |
|
more likely to be in backward references instead as literals). */ |
|
var adjust uint32 = 1 + 2*brotli_min_uint32_t(histogram[i], 11) |
|
histogram[i] += adjust |
|
histogram_total += uint(adjust) |
|
} |
|
} |
|
|
|
buildAndStoreHuffmanTreeFast(histogram[:], histogram_total, /* max_bits = */ |
|
8, depths, bits, bw) |
|
{ |
|
var literal_ratio uint = 0 |
|
for i = 0; i < 256; i++ { |
|
if histogram[i] != 0 { |
|
literal_ratio += uint(histogram[i] * uint32(depths[i])) |
|
} |
|
} |
|
|
|
/* Estimated encoding ratio, millibytes per symbol. */ |
|
return (literal_ratio * 125) / histogram_total |
|
} |
|
} |
|
|
|
/* Builds a command and distance prefix code (each 64 symbols) into "depth" and |
|
"bits" based on "histogram" and stores it into the bit stream. */ |
|
func buildAndStoreCommandPrefixCode1(histogram []uint32, depth []byte, bits []uint16, bw *bitWriter) { |
|
var tree [129]huffmanTree |
|
var cmd_depth = [numCommandSymbols]byte{0} |
|
/* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */ |
|
|
|
var cmd_bits [64]uint16 |
|
|
|
createHuffmanTree(histogram, 64, 15, tree[:], depth) |
|
createHuffmanTree(histogram[64:], 64, 14, tree[:], depth[64:]) |
|
|
|
/* We have to jump through a few hoops here in order to compute |
|
the command bits because the symbols are in a different order than in |
|
the full alphabet. This looks complicated, but having the symbols |
|
in this order in the command bits saves a few branches in the Emit* |
|
functions. */ |
|
copy(cmd_depth[:], depth[:24]) |
|
|
|
copy(cmd_depth[24:][:], depth[40:][:8]) |
|
copy(cmd_depth[32:][:], depth[24:][:8]) |
|
copy(cmd_depth[40:][:], depth[48:][:8]) |
|
copy(cmd_depth[48:][:], depth[32:][:8]) |
|
copy(cmd_depth[56:][:], depth[56:][:8]) |
|
convertBitDepthsToSymbols(cmd_depth[:], 64, cmd_bits[:]) |
|
copy(bits, cmd_bits[:24]) |
|
copy(bits[24:], cmd_bits[32:][:8]) |
|
copy(bits[32:], cmd_bits[48:][:8]) |
|
copy(bits[40:], cmd_bits[24:][:8]) |
|
copy(bits[48:], cmd_bits[40:][:8]) |
|
copy(bits[56:], cmd_bits[56:][:8]) |
|
convertBitDepthsToSymbols(depth[64:], 64, bits[64:]) |
|
{ |
|
/* Create the bit length array for the full command alphabet. */ |
|
var i uint |
|
for i := 0; i < int(64); i++ { |
|
cmd_depth[i] = 0 |
|
} /* only 64 first values were used */ |
|
copy(cmd_depth[:], depth[:8]) |
|
copy(cmd_depth[64:][:], depth[8:][:8]) |
|
copy(cmd_depth[128:][:], depth[16:][:8]) |
|
copy(cmd_depth[192:][:], depth[24:][:8]) |
|
copy(cmd_depth[384:][:], depth[32:][:8]) |
|
for i = 0; i < 8; i++ { |
|
cmd_depth[128+8*i] = depth[40+i] |
|
cmd_depth[256+8*i] = depth[48+i] |
|
cmd_depth[448+8*i] = depth[56+i] |
|
} |
|
|
|
storeHuffmanTree(cmd_depth[:], numCommandSymbols, tree[:], bw) |
|
} |
|
|
|
storeHuffmanTree(depth[64:], 64, tree[:], bw) |
|
} |
|
|
|
/* REQUIRES: insertlen < 6210 */ |
|
func emitInsertLen1(insertlen uint, depth []byte, bits []uint16, histo []uint32, bw *bitWriter) { |
|
if insertlen < 6 { |
|
var code uint = insertlen + 40 |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
histo[code]++ |
|
} else if insertlen < 130 { |
|
var tail uint = insertlen - 2 |
|
var nbits uint32 = log2FloorNonZero(tail) - 1 |
|
var prefix uint = tail >> nbits |
|
var inscode uint = uint((nbits << 1) + uint32(prefix) + 42) |
|
bw.writeBits(uint(depth[inscode]), uint64(bits[inscode])) |
|
bw.writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<<nbits)) |
|
histo[inscode]++ |
|
} else if insertlen < 2114 { |
|
var tail uint = insertlen - 66 |
|
var nbits uint32 = log2FloorNonZero(tail) |
|
var code uint = uint(nbits + 50) |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
bw.writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<<nbits)) |
|
histo[code]++ |
|
} else { |
|
bw.writeBits(uint(depth[61]), uint64(bits[61])) |
|
bw.writeBits(12, uint64(insertlen)-2114) |
|
histo[61]++ |
|
} |
|
} |
|
|
|
func emitLongInsertLen(insertlen uint, depth []byte, bits []uint16, histo []uint32, bw *bitWriter) { |
|
if insertlen < 22594 { |
|
bw.writeBits(uint(depth[62]), uint64(bits[62])) |
|
bw.writeBits(14, uint64(insertlen)-6210) |
|
histo[62]++ |
|
} else { |
|
bw.writeBits(uint(depth[63]), uint64(bits[63])) |
|
bw.writeBits(24, uint64(insertlen)-22594) |
|
histo[63]++ |
|
} |
|
} |
|
|
|
func emitCopyLen1(copylen uint, depth []byte, bits []uint16, histo []uint32, bw *bitWriter) { |
|
if copylen < 10 { |
|
bw.writeBits(uint(depth[copylen+14]), uint64(bits[copylen+14])) |
|
histo[copylen+14]++ |
|
} else if copylen < 134 { |
|
var tail uint = copylen - 6 |
|
var nbits uint32 = log2FloorNonZero(tail) - 1 |
|
var prefix uint = tail >> nbits |
|
var code uint = uint((nbits << 1) + uint32(prefix) + 20) |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
bw.writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<<nbits)) |
|
histo[code]++ |
|
} else if copylen < 2118 { |
|
var tail uint = copylen - 70 |
|
var nbits uint32 = log2FloorNonZero(tail) |
|
var code uint = uint(nbits + 28) |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
bw.writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<<nbits)) |
|
histo[code]++ |
|
} else { |
|
bw.writeBits(uint(depth[39]), uint64(bits[39])) |
|
bw.writeBits(24, uint64(copylen)-2118) |
|
histo[39]++ |
|
} |
|
} |
|
|
|
func emitCopyLenLastDistance1(copylen uint, depth []byte, bits []uint16, histo []uint32, bw *bitWriter) { |
|
if copylen < 12 { |
|
bw.writeBits(uint(depth[copylen-4]), uint64(bits[copylen-4])) |
|
histo[copylen-4]++ |
|
} else if copylen < 72 { |
|
var tail uint = copylen - 8 |
|
var nbits uint32 = log2FloorNonZero(tail) - 1 |
|
var prefix uint = tail >> nbits |
|
var code uint = uint((nbits << 1) + uint32(prefix) + 4) |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
bw.writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<<nbits)) |
|
histo[code]++ |
|
} else if copylen < 136 { |
|
var tail uint = copylen - 8 |
|
var code uint = (tail >> 5) + 30 |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
bw.writeBits(5, uint64(tail)&31) |
|
bw.writeBits(uint(depth[64]), uint64(bits[64])) |
|
histo[code]++ |
|
histo[64]++ |
|
} else if copylen < 2120 { |
|
var tail uint = copylen - 72 |
|
var nbits uint32 = log2FloorNonZero(tail) |
|
var code uint = uint(nbits + 28) |
|
bw.writeBits(uint(depth[code]), uint64(bits[code])) |
|
bw.writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<<nbits)) |
|
bw.writeBits(uint(depth[64]), uint64(bits[64])) |
|
histo[code]++ |
|
histo[64]++ |
|
} else { |
|
bw.writeBits(uint(depth[39]), uint64(bits[39])) |
|
bw.writeBits(24, uint64(copylen)-2120) |
|
bw.writeBits(uint(depth[64]), uint64(bits[64])) |
|
histo[39]++ |
|
histo[64]++ |
|
} |
|
} |
|
|
|
func emitDistance1(distance uint, depth []byte, bits []uint16, histo []uint32, bw *bitWriter) { |
|
var d uint = distance + 3 |
|
var nbits uint32 = log2FloorNonZero(d) - 1 |
|
var prefix uint = (d >> nbits) & 1 |
|
var offset uint = (2 + prefix) << nbits |
|
var distcode uint = uint(2*(nbits-1) + uint32(prefix) + 80) |
|
bw.writeBits(uint(depth[distcode]), uint64(bits[distcode])) |
|
bw.writeBits(uint(nbits), uint64(d)-uint64(offset)) |
|
histo[distcode]++ |
|
} |
|
|
|
func emitLiterals(input []byte, len uint, depth []byte, bits []uint16, bw *bitWriter) { |
|
var j uint |
|
for j = 0; j < len; j++ { |
|
var lit byte = input[j] |
|
bw.writeBits(uint(depth[lit]), uint64(bits[lit])) |
|
} |
|
} |
|
|
|
/* REQUIRES: len <= 1 << 24. */ |
|
func storeMetaBlockHeader1(len uint, is_uncompressed bool, bw *bitWriter) { |
|
var nibbles uint = 6 |
|
|
|
/* ISLAST */ |
|
bw.writeBits(1, 0) |
|
|
|
if len <= 1<<16 { |
|
nibbles = 4 |
|
} else if len <= 1<<20 { |
|
nibbles = 5 |
|
} |
|
|
|
bw.writeBits(2, uint64(nibbles)-4) |
|
bw.writeBits(nibbles*4, uint64(len)-1) |
|
|
|
/* ISUNCOMPRESSED */ |
|
bw.writeSingleBit(is_uncompressed) |
|
} |
|
|
|
var shouldMergeBlock_kSampleRate uint = 43 |
|
|
|
func shouldMergeBlock(data []byte, len uint, depths []byte) bool { |
|
var histo = [256]uint{0} |
|
var i uint |
|
for i = 0; i < len; i += shouldMergeBlock_kSampleRate { |
|
histo[data[i]]++ |
|
} |
|
{ |
|
var total uint = (len + shouldMergeBlock_kSampleRate - 1) / shouldMergeBlock_kSampleRate |
|
var r float64 = (fastLog2(total)+0.5)*float64(total) + 200 |
|
for i = 0; i < 256; i++ { |
|
r -= float64(histo[i]) * (float64(depths[i]) + fastLog2(histo[i])) |
|
} |
|
|
|
return r >= 0.0 |
|
} |
|
} |
|
|
|
func shouldUseUncompressedMode(metablock_start []byte, next_emit []byte, insertlen uint, literal_ratio uint) bool { |
|
var compressed uint = uint(-cap(next_emit) + cap(metablock_start)) |
|
if compressed*50 > insertlen { |
|
return false |
|
} else { |
|
return literal_ratio > 980 |
|
} |
|
} |
|
|
|
func emitUncompressedMetaBlock1(data []byte, storage_ix_start uint, bw *bitWriter) { |
|
bw.rewind(storage_ix_start) |
|
storeMetaBlockHeader1(uint(len(data)), true, bw) |
|
bw.jumpToByteBoundary() |
|
bw.writeBytes(data) |
|
} |
|
|
|
var kCmdHistoSeed = [128]uint32{ |
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
|
1, 1, 1, 1, 0, 0, 0, 0, |
|
} |
|
|
|
var compressFragmentFastImpl_kFirstBlockSize uint = 3 << 15 |
|
var compressFragmentFastImpl_kMergeBlockSize uint = 1 << 16 |
|
|
|
func compressFragmentFastImpl(in []byte, input_size uint, is_last bool, table []int, table_bits uint, cmd_depth []byte, cmd_bits []uint16, cmd_code_numbits *uint, cmd_code []byte, bw *bitWriter) { |
|
var cmd_histo [128]uint32 |
|
var ip_end int |
|
var next_emit int = 0 |
|
var base_ip int = 0 |
|
var input int = 0 |
|
const kInputMarginBytes uint = windowGap |
|
const kMinMatchLen uint = 5 |
|
var metablock_start int = input |
|
var block_size uint = brotli_min_size_t(input_size, compressFragmentFastImpl_kFirstBlockSize) |
|
var total_block_size uint = block_size |
|
var mlen_storage_ix uint = bw.getPos() + 3 |
|
var lit_depth [256]byte |
|
var lit_bits [256]uint16 |
|
var literal_ratio uint |
|
var ip int |
|
var last_distance int |
|
var shift uint = 64 - table_bits |
|
|
|
/* "next_emit" is a pointer to the first byte that is not covered by a |
|
previous copy. Bytes between "next_emit" and the start of the next copy or |
|
the end of the input will be emitted as literal bytes. */ |
|
|
|
/* Save the start of the first block for position and distance computations. |
|
*/ |
|
|
|
/* Save the bit position of the MLEN field of the meta-block header, so that |
|
we can update it later if we decide to extend this meta-block. */ |
|
storeMetaBlockHeader1(block_size, false, bw) |
|
|
|
/* No block splits, no contexts. */ |
|
bw.writeBits(13, 0) |
|
|
|
literal_ratio = buildAndStoreLiteralPrefixCode(in[input:], block_size, lit_depth[:], lit_bits[:], bw) |
|
{ |
|
/* Store the pre-compressed command and distance prefix codes. */ |
|
var i uint |
|
for i = 0; i+7 < *cmd_code_numbits; i += 8 { |
|
bw.writeBits(8, uint64(cmd_code[i>>3])) |
|
} |
|
} |
|
|
|
bw.writeBits(*cmd_code_numbits&7, uint64(cmd_code[*cmd_code_numbits>>3])) |
|
|
|
/* Initialize the command and distance histograms. We will gather |
|
statistics of command and distance codes during the processing |
|
of this block and use it to update the command and distance |
|
prefix codes for the next block. */ |
|
emit_commands: |
|
copy(cmd_histo[:], kCmdHistoSeed[:]) |
|
|
|
/* "ip" is the input pointer. */ |
|
ip = input |
|
|
|
last_distance = -1 |
|
ip_end = int(uint(input) + block_size) |
|
|
|
if block_size >= kInputMarginBytes { |
|
var len_limit uint = brotli_min_size_t(block_size-kMinMatchLen, input_size-kInputMarginBytes) |
|
var ip_limit int = int(uint(input) + len_limit) |
|
/* For the last block, we need to keep a 16 bytes margin so that we can be |
|
sure that all distances are at most window size - 16. |
|
For all other blocks, we only need to keep a margin of 5 bytes so that |
|
we don't go over the block size with a copy. */ |
|
|
|
var next_hash uint32 |
|
ip++ |
|
for next_hash = hash5(in[ip:], shift); ; { |
|
var skip uint32 = 32 |
|
var next_ip int = ip |
|
/* Step 1: Scan forward in the input looking for a 5-byte-long match. |
|
If we get close to exhausting the input then goto emit_remainder. |
|
|
|
Heuristic match skipping: If 32 bytes are scanned with no matches |
|
found, start looking only at every other byte. If 32 more bytes are |
|
scanned, look at every third byte, etc.. When a match is found, |
|
immediately go back to looking at every byte. This is a small loss |
|
(~5% performance, ~0.1% density) for compressible data due to more |
|
bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
|
win since the compressor quickly "realizes" the data is incompressible |
|
and doesn't bother looking for matches everywhere. |
|
|
|
The "skip" variable keeps track of how many bytes there are since the |
|
last match; dividing it by 32 (i.e. right-shifting by five) gives the |
|
number of bytes to move ahead for each iteration. */ |
|
|
|
var candidate int |
|
assert(next_emit < ip) |
|
|
|
trawl: |
|
for { |
|
var hash uint32 = next_hash |
|
var bytes_between_hash_lookups uint32 = skip >> 5 |
|
skip++ |
|
assert(hash == hash5(in[next_ip:], shift)) |
|
ip = next_ip |
|
next_ip = int(uint32(ip) + bytes_between_hash_lookups) |
|
if next_ip > ip_limit { |
|
goto emit_remainder |
|
} |
|
|
|
next_hash = hash5(in[next_ip:], shift) |
|
candidate = ip - last_distance |
|
if isMatch5(in[ip:], in[candidate:]) { |
|
if candidate < ip { |
|
table[hash] = int(ip - base_ip) |
|
break |
|
} |
|
} |
|
|
|
candidate = base_ip + table[hash] |
|
assert(candidate >= base_ip) |
|
assert(candidate < ip) |
|
|
|
table[hash] = int(ip - base_ip) |
|
if !(!isMatch5(in[ip:], in[candidate:])) { |
|
break |
|
} |
|
} |
|
|
|
/* Check copy distance. If candidate is not feasible, continue search. |
|
Checking is done outside of hot loop to reduce overhead. */ |
|
if ip-candidate > maxDistance_compress_fragment { |
|
goto trawl |
|
} |
|
|
|
/* Step 2: Emit the found match together with the literal bytes from |
|
"next_emit" to the bit stream, and then see if we can find a next match |
|
immediately afterwards. Repeat until we find no match for the input |
|
without emitting some literal bytes. */ |
|
{ |
|
var base int = ip |
|
/* > 0 */ |
|
var matched uint = 5 + findMatchLengthWithLimit(in[candidate+5:], in[ip+5:], uint(ip_end-ip)-5) |
|
var distance int = int(base - candidate) |
|
/* We have a 5-byte match at ip, and we need to emit bytes in |
|
[next_emit, ip). */ |
|
|
|
var insert uint = uint(base - next_emit) |
|
ip += int(matched) |
|
if insert < 6210 { |
|
emitInsertLen1(insert, cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
} else if shouldUseUncompressedMode(in[metablock_start:], in[next_emit:], insert, literal_ratio) { |
|
emitUncompressedMetaBlock1(in[metablock_start:base], mlen_storage_ix-3, bw) |
|
input_size -= uint(base - input) |
|
input = base |
|
next_emit = input |
|
goto next_block |
|
} else { |
|
emitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
} |
|
|
|
emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], bw) |
|
if distance == last_distance { |
|
bw.writeBits(uint(cmd_depth[64]), uint64(cmd_bits[64])) |
|
cmd_histo[64]++ |
|
} else { |
|
emitDistance1(uint(distance), cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
last_distance = distance |
|
} |
|
|
|
emitCopyLenLastDistance1(matched, cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
|
|
next_emit = ip |
|
if ip >= ip_limit { |
|
goto emit_remainder |
|
} |
|
|
|
/* We could immediately start working at ip now, but to improve |
|
compression we first update "table" with the hashes of some positions |
|
within the last copy. */ |
|
{ |
|
var input_bytes uint64 = binary.LittleEndian.Uint64(in[ip-3:]) |
|
var prev_hash uint32 = hashBytesAtOffset5(input_bytes, 0, shift) |
|
var cur_hash uint32 = hashBytesAtOffset5(input_bytes, 3, shift) |
|
table[prev_hash] = int(ip - base_ip - 3) |
|
prev_hash = hashBytesAtOffset5(input_bytes, 1, shift) |
|
table[prev_hash] = int(ip - base_ip - 2) |
|
prev_hash = hashBytesAtOffset5(input_bytes, 2, shift) |
|
table[prev_hash] = int(ip - base_ip - 1) |
|
|
|
candidate = base_ip + table[cur_hash] |
|
table[cur_hash] = int(ip - base_ip) |
|
} |
|
} |
|
|
|
for isMatch5(in[ip:], in[candidate:]) { |
|
var base int = ip |
|
/* We have a 5-byte match at ip, and no need to emit any literal bytes |
|
prior to ip. */ |
|
|
|
var matched uint = 5 + findMatchLengthWithLimit(in[candidate+5:], in[ip+5:], uint(ip_end-ip)-5) |
|
if ip-candidate > maxDistance_compress_fragment { |
|
break |
|
} |
|
ip += int(matched) |
|
last_distance = int(base - candidate) /* > 0 */ |
|
emitCopyLen1(matched, cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
emitDistance1(uint(last_distance), cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
|
|
next_emit = ip |
|
if ip >= ip_limit { |
|
goto emit_remainder |
|
} |
|
|
|
/* We could immediately start working at ip now, but to improve |
|
compression we first update "table" with the hashes of some positions |
|
within the last copy. */ |
|
{ |
|
var input_bytes uint64 = binary.LittleEndian.Uint64(in[ip-3:]) |
|
var prev_hash uint32 = hashBytesAtOffset5(input_bytes, 0, shift) |
|
var cur_hash uint32 = hashBytesAtOffset5(input_bytes, 3, shift) |
|
table[prev_hash] = int(ip - base_ip - 3) |
|
prev_hash = hashBytesAtOffset5(input_bytes, 1, shift) |
|
table[prev_hash] = int(ip - base_ip - 2) |
|
prev_hash = hashBytesAtOffset5(input_bytes, 2, shift) |
|
table[prev_hash] = int(ip - base_ip - 1) |
|
|
|
candidate = base_ip + table[cur_hash] |
|
table[cur_hash] = int(ip - base_ip) |
|
} |
|
} |
|
|
|
ip++ |
|
next_hash = hash5(in[ip:], shift) |
|
} |
|
} |
|
|
|
emit_remainder: |
|
assert(next_emit <= ip_end) |
|
input += int(block_size) |
|
input_size -= block_size |
|
block_size = brotli_min_size_t(input_size, compressFragmentFastImpl_kMergeBlockSize) |
|
|
|
/* Decide if we want to continue this meta-block instead of emitting the |
|
last insert-only command. */ |
|
if input_size > 0 && total_block_size+block_size <= 1<<20 && shouldMergeBlock(in[input:], block_size, lit_depth[:]) { |
|
assert(total_block_size > 1<<16) |
|
|
|
/* Update the size of the current meta-block and continue emitting commands. |
|
We can do this because the current size and the new size both have 5 |
|
nibbles. */ |
|
total_block_size += block_size |
|
|
|
bw.updateBits(20, uint32(total_block_size-1), mlen_storage_ix) |
|
goto emit_commands |
|
} |
|
|
|
/* Emit the remaining bytes as literals. */ |
|
if next_emit < ip_end { |
|
var insert uint = uint(ip_end - next_emit) |
|
if insert < 6210 { |
|
emitInsertLen1(insert, cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], bw) |
|
} else if shouldUseUncompressedMode(in[metablock_start:], in[next_emit:], insert, literal_ratio) { |
|
emitUncompressedMetaBlock1(in[metablock_start:ip_end], mlen_storage_ix-3, bw) |
|
} else { |
|
emitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo[:], bw) |
|
emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], bw) |
|
} |
|
} |
|
|
|
next_emit = ip_end |
|
|
|
/* If we have more data, write a new meta-block header and prefix codes and |
|
then continue emitting commands. */ |
|
next_block: |
|
if input_size > 0 { |
|
metablock_start = input |
|
block_size = brotli_min_size_t(input_size, compressFragmentFastImpl_kFirstBlockSize) |
|
total_block_size = block_size |
|
|
|
/* Save the bit position of the MLEN field of the meta-block header, so that |
|
we can update it later if we decide to extend this meta-block. */ |
|
mlen_storage_ix = bw.getPos() + 3 |
|
|
|
storeMetaBlockHeader1(block_size, false, bw) |
|
|
|
/* No block splits, no contexts. */ |
|
bw.writeBits(13, 0) |
|
|
|
literal_ratio = buildAndStoreLiteralPrefixCode(in[input:], block_size, lit_depth[:], lit_bits[:], bw) |
|
buildAndStoreCommandPrefixCode1(cmd_histo[:], cmd_depth, cmd_bits, bw) |
|
goto emit_commands |
|
} |
|
|
|
if !is_last { |
|
/* If this is not the last block, update the command and distance prefix |
|
codes for the next block and store the compressed forms. */ |
|
var bw bitWriter |
|
bw.dst = cmd_code |
|
buildAndStoreCommandPrefixCode1(cmd_histo[:], cmd_depth, cmd_bits, &bw) |
|
*cmd_code_numbits = bw.getPos() |
|
} |
|
} |
|
|
|
/* Compresses "input" string to bw as one or more complete meta-blocks. |
|
|
|
If "is_last" is 1, emits an additional empty last meta-block. |
|
|
|
"cmd_depth" and "cmd_bits" contain the command and distance prefix codes |
|
(see comment in encode.h) used for the encoding of this input fragment. |
|
If "is_last" is 0, they are updated to reflect the statistics |
|
of this input fragment, to be used for the encoding of the next fragment. |
|
|
|
"*cmd_code_numbits" is the number of bits of the compressed representation |
|
of the command and distance prefix codes, and "cmd_code" is an array of |
|
at least "(*cmd_code_numbits + 7) >> 3" size that contains the compressed |
|
command and distance prefix codes. If "is_last" is 0, these are also |
|
updated to represent the updated "cmd_depth" and "cmd_bits". |
|
|
|
REQUIRES: "input_size" is greater than zero, or "is_last" is 1. |
|
REQUIRES: "input_size" is less or equal to maximal metablock size (1 << 24). |
|
REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
|
REQUIRES: "table_size" is an odd (9, 11, 13, 15) power of two |
|
OUTPUT: maximal copy distance <= |input_size| |
|
OUTPUT: maximal copy distance <= BROTLI_MAX_BACKWARD_LIMIT(18) */ |
|
func compressFragmentFast(input []byte, input_size uint, is_last bool, table []int, table_size uint, cmd_depth []byte, cmd_bits []uint16, cmd_code_numbits *uint, cmd_code []byte, bw *bitWriter) { |
|
var initial_storage_ix uint = bw.getPos() |
|
var table_bits uint = uint(log2FloorNonZero(table_size)) |
|
|
|
if input_size == 0 { |
|
assert(is_last) |
|
bw.writeBits(1, 1) /* islast */ |
|
bw.writeBits(1, 1) /* isempty */ |
|
bw.jumpToByteBoundary() |
|
return |
|
} |
|
|
|
compressFragmentFastImpl(input, input_size, is_last, table, table_bits, cmd_depth, cmd_bits, cmd_code_numbits, cmd_code, bw) |
|
|
|
/* If output is larger than single uncompressed block, rewrite it. */ |
|
if bw.getPos()-initial_storage_ix > 31+(input_size<<3) { |
|
emitUncompressedMetaBlock1(input[:input_size], initial_storage_ix, bw) |
|
} |
|
|
|
if is_last { |
|
bw.writeBits(1, 1) /* islast */ |
|
bw.writeBits(1, 1) /* isempty */ |
|
bw.jumpToByteBoundary() |
|
} |
|
}
|
|
|