Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.9 KiB
94 lines
2.9 KiB
package dns |
|
|
|
import ( |
|
"crypto" |
|
"crypto/dsa" |
|
"crypto/ecdsa" |
|
"crypto/rsa" |
|
"math/big" |
|
"strconv" |
|
|
|
"golang.org/x/crypto/ed25519" |
|
) |
|
|
|
const format = "Private-key-format: v1.3\n" |
|
|
|
var bigIntOne = big.NewInt(1) |
|
|
|
// PrivateKeyString converts a PrivateKey to a string. This string has the same |
|
// format as the private-key-file of BIND9 (Private-key-format: v1.3). |
|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY |
|
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey |
|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string { |
|
algorithm := strconv.Itoa(int(r.Algorithm)) |
|
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")" |
|
|
|
switch p := p.(type) { |
|
case *rsa.PrivateKey: |
|
modulus := toBase64(p.PublicKey.N.Bytes()) |
|
e := big.NewInt(int64(p.PublicKey.E)) |
|
publicExponent := toBase64(e.Bytes()) |
|
privateExponent := toBase64(p.D.Bytes()) |
|
prime1 := toBase64(p.Primes[0].Bytes()) |
|
prime2 := toBase64(p.Primes[1].Bytes()) |
|
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm |
|
// and from: http://code.google.com/p/go/issues/detail?id=987 |
|
p1 := new(big.Int).Sub(p.Primes[0], bigIntOne) |
|
q1 := new(big.Int).Sub(p.Primes[1], bigIntOne) |
|
exp1 := new(big.Int).Mod(p.D, p1) |
|
exp2 := new(big.Int).Mod(p.D, q1) |
|
coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0]) |
|
|
|
exponent1 := toBase64(exp1.Bytes()) |
|
exponent2 := toBase64(exp2.Bytes()) |
|
coefficient := toBase64(coeff.Bytes()) |
|
|
|
return format + |
|
"Algorithm: " + algorithm + "\n" + |
|
"Modulus: " + modulus + "\n" + |
|
"PublicExponent: " + publicExponent + "\n" + |
|
"PrivateExponent: " + privateExponent + "\n" + |
|
"Prime1: " + prime1 + "\n" + |
|
"Prime2: " + prime2 + "\n" + |
|
"Exponent1: " + exponent1 + "\n" + |
|
"Exponent2: " + exponent2 + "\n" + |
|
"Coefficient: " + coefficient + "\n" |
|
|
|
case *ecdsa.PrivateKey: |
|
var intlen int |
|
switch r.Algorithm { |
|
case ECDSAP256SHA256: |
|
intlen = 32 |
|
case ECDSAP384SHA384: |
|
intlen = 48 |
|
} |
|
private := toBase64(intToBytes(p.D, intlen)) |
|
return format + |
|
"Algorithm: " + algorithm + "\n" + |
|
"PrivateKey: " + private + "\n" |
|
|
|
case *dsa.PrivateKey: |
|
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8) |
|
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8)) |
|
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20)) |
|
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8)) |
|
priv := toBase64(intToBytes(p.X, 20)) |
|
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8)) |
|
return format + |
|
"Algorithm: " + algorithm + "\n" + |
|
"Prime(p): " + prime + "\n" + |
|
"Subprime(q): " + subprime + "\n" + |
|
"Base(g): " + base + "\n" + |
|
"Private_value(x): " + priv + "\n" + |
|
"Public_value(y): " + pub + "\n" |
|
|
|
case ed25519.PrivateKey: |
|
private := toBase64(p.Seed()) |
|
return format + |
|
"Algorithm: " + algorithm + "\n" + |
|
"PrivateKey: " + private + "\n" |
|
|
|
default: |
|
return "" |
|
} |
|
}
|
|
|