Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
9.7 KiB
326 lines
9.7 KiB
package brotli |
|
|
|
import "math" |
|
|
|
/* Copyright 2013 Google Inc. All Rights Reserved. |
|
|
|
Distributed under MIT license. |
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
|
*/ |
|
|
|
/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if |
|
it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */ |
|
func compareAndPushToQueueDistance(out []histogramDistance, cluster_size []uint32, idx1 uint32, idx2 uint32, max_num_pairs uint, pairs []histogramPair, num_pairs *uint) { |
|
var is_good_pair bool = false |
|
var p histogramPair |
|
p.idx2 = 0 |
|
p.idx1 = p.idx2 |
|
p.cost_combo = 0 |
|
p.cost_diff = p.cost_combo |
|
if idx1 == idx2 { |
|
return |
|
} |
|
|
|
if idx2 < idx1 { |
|
var t uint32 = idx2 |
|
idx2 = idx1 |
|
idx1 = t |
|
} |
|
|
|
p.idx1 = idx1 |
|
p.idx2 = idx2 |
|
p.cost_diff = 0.5 * clusterCostDiff(uint(cluster_size[idx1]), uint(cluster_size[idx2])) |
|
p.cost_diff -= out[idx1].bit_cost_ |
|
p.cost_diff -= out[idx2].bit_cost_ |
|
|
|
if out[idx1].total_count_ == 0 { |
|
p.cost_combo = out[idx2].bit_cost_ |
|
is_good_pair = true |
|
} else if out[idx2].total_count_ == 0 { |
|
p.cost_combo = out[idx1].bit_cost_ |
|
is_good_pair = true |
|
} else { |
|
var threshold float64 |
|
if *num_pairs == 0 { |
|
threshold = 1e99 |
|
} else { |
|
threshold = brotli_max_double(0.0, pairs[0].cost_diff) |
|
} |
|
var combo histogramDistance = out[idx1] |
|
var cost_combo float64 |
|
histogramAddHistogramDistance(&combo, &out[idx2]) |
|
cost_combo = populationCostDistance(&combo) |
|
if cost_combo < threshold-p.cost_diff { |
|
p.cost_combo = cost_combo |
|
is_good_pair = true |
|
} |
|
} |
|
|
|
if is_good_pair { |
|
p.cost_diff += p.cost_combo |
|
if *num_pairs > 0 && histogramPairIsLess(&pairs[0], &p) { |
|
/* Replace the top of the queue if needed. */ |
|
if *num_pairs < max_num_pairs { |
|
pairs[*num_pairs] = pairs[0] |
|
(*num_pairs)++ |
|
} |
|
|
|
pairs[0] = p |
|
} else if *num_pairs < max_num_pairs { |
|
pairs[*num_pairs] = p |
|
(*num_pairs)++ |
|
} |
|
} |
|
} |
|
|
|
func histogramCombineDistance(out []histogramDistance, cluster_size []uint32, symbols []uint32, clusters []uint32, pairs []histogramPair, num_clusters uint, symbols_size uint, max_clusters uint, max_num_pairs uint) uint { |
|
var cost_diff_threshold float64 = 0.0 |
|
var min_cluster_size uint = 1 |
|
var num_pairs uint = 0 |
|
{ |
|
/* We maintain a vector of histogram pairs, with the property that the pair |
|
with the maximum bit cost reduction is the first. */ |
|
var idx1 uint |
|
for idx1 = 0; idx1 < num_clusters; idx1++ { |
|
var idx2 uint |
|
for idx2 = idx1 + 1; idx2 < num_clusters; idx2++ { |
|
compareAndPushToQueueDistance(out, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, pairs[0:], &num_pairs) |
|
} |
|
} |
|
} |
|
|
|
for num_clusters > min_cluster_size { |
|
var best_idx1 uint32 |
|
var best_idx2 uint32 |
|
var i uint |
|
if pairs[0].cost_diff >= cost_diff_threshold { |
|
cost_diff_threshold = 1e99 |
|
min_cluster_size = max_clusters |
|
continue |
|
} |
|
|
|
/* Take the best pair from the top of heap. */ |
|
best_idx1 = pairs[0].idx1 |
|
|
|
best_idx2 = pairs[0].idx2 |
|
histogramAddHistogramDistance(&out[best_idx1], &out[best_idx2]) |
|
out[best_idx1].bit_cost_ = pairs[0].cost_combo |
|
cluster_size[best_idx1] += cluster_size[best_idx2] |
|
for i = 0; i < symbols_size; i++ { |
|
if symbols[i] == best_idx2 { |
|
symbols[i] = best_idx1 |
|
} |
|
} |
|
|
|
for i = 0; i < num_clusters; i++ { |
|
if clusters[i] == best_idx2 { |
|
copy(clusters[i:], clusters[i+1:][:num_clusters-i-1]) |
|
break |
|
} |
|
} |
|
|
|
num_clusters-- |
|
{ |
|
/* Remove pairs intersecting the just combined best pair. */ |
|
var copy_to_idx uint = 0 |
|
for i = 0; i < num_pairs; i++ { |
|
var p *histogramPair = &pairs[i] |
|
if p.idx1 == best_idx1 || p.idx2 == best_idx1 || p.idx1 == best_idx2 || p.idx2 == best_idx2 { |
|
/* Remove invalid pair from the queue. */ |
|
continue |
|
} |
|
|
|
if histogramPairIsLess(&pairs[0], p) { |
|
/* Replace the top of the queue if needed. */ |
|
var front histogramPair = pairs[0] |
|
pairs[0] = *p |
|
pairs[copy_to_idx] = front |
|
} else { |
|
pairs[copy_to_idx] = *p |
|
} |
|
|
|
copy_to_idx++ |
|
} |
|
|
|
num_pairs = copy_to_idx |
|
} |
|
|
|
/* Push new pairs formed with the combined histogram to the heap. */ |
|
for i = 0; i < num_clusters; i++ { |
|
compareAndPushToQueueDistance(out, cluster_size, best_idx1, clusters[i], max_num_pairs, pairs[0:], &num_pairs) |
|
} |
|
} |
|
|
|
return num_clusters |
|
} |
|
|
|
/* What is the bit cost of moving histogram from cur_symbol to candidate. */ |
|
func histogramBitCostDistanceDistance(histogram *histogramDistance, candidate *histogramDistance) float64 { |
|
if histogram.total_count_ == 0 { |
|
return 0.0 |
|
} else { |
|
var tmp histogramDistance = *histogram |
|
histogramAddHistogramDistance(&tmp, candidate) |
|
return populationCostDistance(&tmp) - candidate.bit_cost_ |
|
} |
|
} |
|
|
|
/* Find the best 'out' histogram for each of the 'in' histograms. |
|
When called, clusters[0..num_clusters) contains the unique values from |
|
symbols[0..in_size), but this property is not preserved in this function. |
|
Note: we assume that out[]->bit_cost_ is already up-to-date. */ |
|
func histogramRemapDistance(in []histogramDistance, in_size uint, clusters []uint32, num_clusters uint, out []histogramDistance, symbols []uint32) { |
|
var i uint |
|
for i = 0; i < in_size; i++ { |
|
var best_out uint32 |
|
if i == 0 { |
|
best_out = symbols[0] |
|
} else { |
|
best_out = symbols[i-1] |
|
} |
|
var best_bits float64 = histogramBitCostDistanceDistance(&in[i], &out[best_out]) |
|
var j uint |
|
for j = 0; j < num_clusters; j++ { |
|
var cur_bits float64 = histogramBitCostDistanceDistance(&in[i], &out[clusters[j]]) |
|
if cur_bits < best_bits { |
|
best_bits = cur_bits |
|
best_out = clusters[j] |
|
} |
|
} |
|
|
|
symbols[i] = best_out |
|
} |
|
|
|
/* Recompute each out based on raw and symbols. */ |
|
for i = 0; i < num_clusters; i++ { |
|
histogramClearDistance(&out[clusters[i]]) |
|
} |
|
|
|
for i = 0; i < in_size; i++ { |
|
histogramAddHistogramDistance(&out[symbols[i]], &in[i]) |
|
} |
|
} |
|
|
|
/* Reorders elements of the out[0..length) array and changes values in |
|
symbols[0..length) array in the following way: |
|
* when called, symbols[] contains indexes into out[], and has N unique |
|
values (possibly N < length) |
|
* on return, symbols'[i] = f(symbols[i]) and |
|
out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length, |
|
where f is a bijection between the range of symbols[] and [0..N), and |
|
the first occurrences of values in symbols'[i] come in consecutive |
|
increasing order. |
|
Returns N, the number of unique values in symbols[]. */ |
|
|
|
var histogramReindexDistance_kInvalidIndex uint32 = math.MaxUint32 |
|
|
|
func histogramReindexDistance(out []histogramDistance, symbols []uint32, length uint) uint { |
|
var new_index []uint32 = make([]uint32, length) |
|
var next_index uint32 |
|
var tmp []histogramDistance |
|
var i uint |
|
for i = 0; i < length; i++ { |
|
new_index[i] = histogramReindexDistance_kInvalidIndex |
|
} |
|
|
|
next_index = 0 |
|
for i = 0; i < length; i++ { |
|
if new_index[symbols[i]] == histogramReindexDistance_kInvalidIndex { |
|
new_index[symbols[i]] = next_index |
|
next_index++ |
|
} |
|
} |
|
|
|
/* TODO: by using idea of "cycle-sort" we can avoid allocation of |
|
tmp and reduce the number of copying by the factor of 2. */ |
|
tmp = make([]histogramDistance, next_index) |
|
|
|
next_index = 0 |
|
for i = 0; i < length; i++ { |
|
if new_index[symbols[i]] == next_index { |
|
tmp[next_index] = out[symbols[i]] |
|
next_index++ |
|
} |
|
|
|
symbols[i] = new_index[symbols[i]] |
|
} |
|
|
|
new_index = nil |
|
for i = 0; uint32(i) < next_index; i++ { |
|
out[i] = tmp[i] |
|
} |
|
|
|
tmp = nil |
|
return uint(next_index) |
|
} |
|
|
|
func clusterHistogramsDistance(in []histogramDistance, in_size uint, max_histograms uint, out []histogramDistance, out_size *uint, histogram_symbols []uint32) { |
|
var cluster_size []uint32 = make([]uint32, in_size) |
|
var clusters []uint32 = make([]uint32, in_size) |
|
var num_clusters uint = 0 |
|
var max_input_histograms uint = 64 |
|
var pairs_capacity uint = max_input_histograms * max_input_histograms / 2 |
|
var pairs []histogramPair = make([]histogramPair, (pairs_capacity + 1)) |
|
var i uint |
|
|
|
/* For the first pass of clustering, we allow all pairs. */ |
|
for i = 0; i < in_size; i++ { |
|
cluster_size[i] = 1 |
|
} |
|
|
|
for i = 0; i < in_size; i++ { |
|
out[i] = in[i] |
|
out[i].bit_cost_ = populationCostDistance(&in[i]) |
|
histogram_symbols[i] = uint32(i) |
|
} |
|
|
|
for i = 0; i < in_size; i += max_input_histograms { |
|
var num_to_combine uint = brotli_min_size_t(in_size-i, max_input_histograms) |
|
var num_new_clusters uint |
|
var j uint |
|
for j = 0; j < num_to_combine; j++ { |
|
clusters[num_clusters+j] = uint32(i + j) |
|
} |
|
|
|
num_new_clusters = histogramCombineDistance(out, cluster_size, histogram_symbols[i:], clusters[num_clusters:], pairs, num_to_combine, num_to_combine, max_histograms, pairs_capacity) |
|
num_clusters += num_new_clusters |
|
} |
|
{ |
|
/* For the second pass, we limit the total number of histogram pairs. |
|
After this limit is reached, we only keep searching for the best pair. */ |
|
var max_num_pairs uint = brotli_min_size_t(64*num_clusters, (num_clusters/2)*num_clusters) |
|
if pairs_capacity < (max_num_pairs + 1) { |
|
var _new_size uint |
|
if pairs_capacity == 0 { |
|
_new_size = max_num_pairs + 1 |
|
} else { |
|
_new_size = pairs_capacity |
|
} |
|
var new_array []histogramPair |
|
for _new_size < (max_num_pairs + 1) { |
|
_new_size *= 2 |
|
} |
|
new_array = make([]histogramPair, _new_size) |
|
if pairs_capacity != 0 { |
|
copy(new_array, pairs[:pairs_capacity]) |
|
} |
|
|
|
pairs = new_array |
|
pairs_capacity = _new_size |
|
} |
|
|
|
/* Collapse similar histograms. */ |
|
num_clusters = histogramCombineDistance(out, cluster_size, histogram_symbols, clusters, pairs, num_clusters, in_size, max_histograms, max_num_pairs) |
|
} |
|
|
|
pairs = nil |
|
cluster_size = nil |
|
|
|
/* Find the optimal map from original histograms to the final ones. */ |
|
histogramRemapDistance(in, in_size, clusters, num_clusters, out, histogram_symbols) |
|
|
|
clusters = nil |
|
|
|
/* Convert the context map to a canonical form. */ |
|
*out_size = histogramReindexDistance(out, histogram_symbols, in_size) |
|
}
|
|
|