Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
309 lines
7.4 KiB
309 lines
7.4 KiB
// Copyright 2014-2019 Ulrich Kunitz. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package lzma |
|
|
|
import ( |
|
"errors" |
|
"fmt" |
|
|
|
"github.com/ulikunitz/xz/internal/hash" |
|
) |
|
|
|
/* For compression we need to find byte sequences that match the byte |
|
* sequence at the dictionary head. A hash table is a simple method to |
|
* provide this capability. |
|
*/ |
|
|
|
// maxMatches limits the number of matches requested from the Matches |
|
// function. This controls the speed of the overall encoding. |
|
const maxMatches = 16 |
|
|
|
// shortDists defines the number of short distances supported by the |
|
// implementation. |
|
const shortDists = 8 |
|
|
|
// The minimum is somehow arbitrary but the maximum is limited by the |
|
// memory requirements of the hash table. |
|
const ( |
|
minTableExponent = 9 |
|
maxTableExponent = 20 |
|
) |
|
|
|
// newRoller contains the function used to create an instance of the |
|
// hash.Roller. |
|
var newRoller = func(n int) hash.Roller { return hash.NewCyclicPoly(n) } |
|
|
|
// hashTable stores the hash table including the rolling hash method. |
|
// |
|
// We implement chained hashing into a circular buffer. Each entry in |
|
// the circular buffer stores the delta distance to the next position with a |
|
// word that has the same hash value. |
|
type hashTable struct { |
|
dict *encoderDict |
|
// actual hash table |
|
t []int64 |
|
// circular list data with the offset to the next word |
|
data []uint32 |
|
front int |
|
// mask for computing the index for the hash table |
|
mask uint64 |
|
// hash offset; initial value is -int64(wordLen) |
|
hoff int64 |
|
// length of the hashed word |
|
wordLen int |
|
// hash roller for computing the hash values for the Write |
|
// method |
|
wr hash.Roller |
|
// hash roller for computing arbitrary hashes |
|
hr hash.Roller |
|
// preallocated slices |
|
p [maxMatches]int64 |
|
distances [maxMatches + shortDists]int |
|
} |
|
|
|
// hashTableExponent derives the hash table exponent from the dictionary |
|
// capacity. |
|
func hashTableExponent(n uint32) int { |
|
e := 30 - nlz32(n) |
|
switch { |
|
case e < minTableExponent: |
|
e = minTableExponent |
|
case e > maxTableExponent: |
|
e = maxTableExponent |
|
} |
|
return e |
|
} |
|
|
|
// newHashTable creates a new hash table for words of length wordLen |
|
func newHashTable(capacity int, wordLen int) (t *hashTable, err error) { |
|
if !(0 < capacity) { |
|
return nil, errors.New( |
|
"newHashTable: capacity must not be negative") |
|
} |
|
exp := hashTableExponent(uint32(capacity)) |
|
if !(1 <= wordLen && wordLen <= 4) { |
|
return nil, errors.New("newHashTable: " + |
|
"argument wordLen out of range") |
|
} |
|
n := 1 << uint(exp) |
|
if n <= 0 { |
|
panic("newHashTable: exponent is too large") |
|
} |
|
t = &hashTable{ |
|
t: make([]int64, n), |
|
data: make([]uint32, capacity), |
|
mask: (uint64(1) << uint(exp)) - 1, |
|
hoff: -int64(wordLen), |
|
wordLen: wordLen, |
|
wr: newRoller(wordLen), |
|
hr: newRoller(wordLen), |
|
} |
|
return t, nil |
|
} |
|
|
|
func (t *hashTable) SetDict(d *encoderDict) { t.dict = d } |
|
|
|
// buffered returns the number of bytes that are currently hashed. |
|
func (t *hashTable) buffered() int { |
|
n := t.hoff + 1 |
|
switch { |
|
case n <= 0: |
|
return 0 |
|
case n >= int64(len(t.data)): |
|
return len(t.data) |
|
} |
|
return int(n) |
|
} |
|
|
|
// addIndex adds n to an index ensuring that is stays inside the |
|
// circular buffer for the hash chain. |
|
func (t *hashTable) addIndex(i, n int) int { |
|
i += n - len(t.data) |
|
if i < 0 { |
|
i += len(t.data) |
|
} |
|
return i |
|
} |
|
|
|
// putDelta puts the delta instance at the current front of the circular |
|
// chain buffer. |
|
func (t *hashTable) putDelta(delta uint32) { |
|
t.data[t.front] = delta |
|
t.front = t.addIndex(t.front, 1) |
|
} |
|
|
|
// putEntry puts a new entry into the hash table. If there is already a |
|
// value stored it is moved into the circular chain buffer. |
|
func (t *hashTable) putEntry(h uint64, pos int64) { |
|
if pos < 0 { |
|
return |
|
} |
|
i := h & t.mask |
|
old := t.t[i] - 1 |
|
t.t[i] = pos + 1 |
|
var delta int64 |
|
if old >= 0 { |
|
delta = pos - old |
|
if delta > 1<<32-1 || delta > int64(t.buffered()) { |
|
delta = 0 |
|
} |
|
} |
|
t.putDelta(uint32(delta)) |
|
} |
|
|
|
// WriteByte converts a single byte into a hash and puts them into the hash |
|
// table. |
|
func (t *hashTable) WriteByte(b byte) error { |
|
h := t.wr.RollByte(b) |
|
t.hoff++ |
|
t.putEntry(h, t.hoff) |
|
return nil |
|
} |
|
|
|
// Write converts the bytes provided into hash tables and stores the |
|
// abbreviated offsets into the hash table. The method will never return an |
|
// error. |
|
func (t *hashTable) Write(p []byte) (n int, err error) { |
|
for _, b := range p { |
|
// WriteByte doesn't generate an error. |
|
t.WriteByte(b) |
|
} |
|
return len(p), nil |
|
} |
|
|
|
// getMatches the matches for a specific hash. The functions returns the |
|
// number of positions found. |
|
// |
|
// TODO: Make a getDistances because that we are actually interested in. |
|
func (t *hashTable) getMatches(h uint64, positions []int64) (n int) { |
|
if t.hoff < 0 || len(positions) == 0 { |
|
return 0 |
|
} |
|
buffered := t.buffered() |
|
tailPos := t.hoff + 1 - int64(buffered) |
|
rear := t.front - buffered |
|
if rear >= 0 { |
|
rear -= len(t.data) |
|
} |
|
// get the slot for the hash |
|
pos := t.t[h&t.mask] - 1 |
|
delta := pos - tailPos |
|
for { |
|
if delta < 0 { |
|
return n |
|
} |
|
positions[n] = tailPos + delta |
|
n++ |
|
if n >= len(positions) { |
|
return n |
|
} |
|
i := rear + int(delta) |
|
if i < 0 { |
|
i += len(t.data) |
|
} |
|
u := t.data[i] |
|
if u == 0 { |
|
return n |
|
} |
|
delta -= int64(u) |
|
} |
|
} |
|
|
|
// hash computes the rolling hash for the word stored in p. For correct |
|
// results its length must be equal to t.wordLen. |
|
func (t *hashTable) hash(p []byte) uint64 { |
|
var h uint64 |
|
for _, b := range p { |
|
h = t.hr.RollByte(b) |
|
} |
|
return h |
|
} |
|
|
|
// Matches fills the positions slice with potential matches. The |
|
// functions returns the number of positions filled into positions. The |
|
// byte slice p must have word length of the hash table. |
|
func (t *hashTable) Matches(p []byte, positions []int64) int { |
|
if len(p) != t.wordLen { |
|
panic(fmt.Errorf( |
|
"byte slice must have length %d", t.wordLen)) |
|
} |
|
h := t.hash(p) |
|
return t.getMatches(h, positions) |
|
} |
|
|
|
// NextOp identifies the next operation using the hash table. |
|
// |
|
// TODO: Use all repetitions to find matches. |
|
func (t *hashTable) NextOp(rep [4]uint32) operation { |
|
// get positions |
|
data := t.dict.data[:maxMatchLen] |
|
n, _ := t.dict.buf.Peek(data) |
|
data = data[:n] |
|
var p []int64 |
|
if n < t.wordLen { |
|
p = t.p[:0] |
|
} else { |
|
p = t.p[:maxMatches] |
|
n = t.Matches(data[:t.wordLen], p) |
|
p = p[:n] |
|
} |
|
|
|
// convert positions in potential distances |
|
head := t.dict.head |
|
dists := append(t.distances[:0], 1, 2, 3, 4, 5, 6, 7, 8) |
|
for _, pos := range p { |
|
dis := int(head - pos) |
|
if dis > shortDists { |
|
dists = append(dists, dis) |
|
} |
|
} |
|
|
|
// check distances |
|
var m match |
|
dictLen := t.dict.DictLen() |
|
for _, dist := range dists { |
|
if dist > dictLen { |
|
continue |
|
} |
|
|
|
// Here comes a trick. We are only interested in matches |
|
// that are longer than the matches we have been found |
|
// before. So before we test the whole byte sequence at |
|
// the given distance, we test the first byte that would |
|
// make the match longer. If it doesn't match the byte |
|
// to match, we don't to care any longer. |
|
i := t.dict.buf.rear - dist + m.n |
|
if i < 0 { |
|
i += len(t.dict.buf.data) |
|
} |
|
if t.dict.buf.data[i] != data[m.n] { |
|
// We can't get a longer match. Jump to the next |
|
// distance. |
|
continue |
|
} |
|
|
|
n := t.dict.buf.matchLen(dist, data) |
|
switch n { |
|
case 0: |
|
continue |
|
case 1: |
|
if uint32(dist-minDistance) != rep[0] { |
|
continue |
|
} |
|
} |
|
if n > m.n { |
|
m = match{int64(dist), n} |
|
if n == len(data) { |
|
// No better match will be found. |
|
break |
|
} |
|
} |
|
} |
|
|
|
if m.n == 0 { |
|
return lit{data[0]} |
|
} |
|
return m |
|
}
|
|
|