Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1000 lines
24 KiB
1000 lines
24 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// Package flate implements the DEFLATE compressed data format, described in |
|
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file |
|
// formats. |
|
package flate |
|
|
|
import ( |
|
"bufio" |
|
"fmt" |
|
"io" |
|
"math/bits" |
|
"strconv" |
|
"sync" |
|
) |
|
|
|
const ( |
|
maxCodeLen = 16 // max length of Huffman code |
|
maxCodeLenMask = 15 // mask for max length of Huffman code |
|
// The next three numbers come from the RFC section 3.2.7, with the |
|
// additional proviso in section 3.2.5 which implies that distance codes |
|
// 30 and 31 should never occur in compressed data. |
|
maxNumLit = 286 |
|
maxNumDist = 30 |
|
numCodes = 19 // number of codes in Huffman meta-code |
|
|
|
debugDecode = false |
|
) |
|
|
|
// Initialize the fixedHuffmanDecoder only once upon first use. |
|
var fixedOnce sync.Once |
|
var fixedHuffmanDecoder huffmanDecoder |
|
|
|
// A CorruptInputError reports the presence of corrupt input at a given offset. |
|
type CorruptInputError int64 |
|
|
|
func (e CorruptInputError) Error() string { |
|
return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10) |
|
} |
|
|
|
// An InternalError reports an error in the flate code itself. |
|
type InternalError string |
|
|
|
func (e InternalError) Error() string { return "flate: internal error: " + string(e) } |
|
|
|
// A ReadError reports an error encountered while reading input. |
|
// |
|
// Deprecated: No longer returned. |
|
type ReadError struct { |
|
Offset int64 // byte offset where error occurred |
|
Err error // error returned by underlying Read |
|
} |
|
|
|
func (e *ReadError) Error() string { |
|
return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error() |
|
} |
|
|
|
// A WriteError reports an error encountered while writing output. |
|
// |
|
// Deprecated: No longer returned. |
|
type WriteError struct { |
|
Offset int64 // byte offset where error occurred |
|
Err error // error returned by underlying Write |
|
} |
|
|
|
func (e *WriteError) Error() string { |
|
return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error() |
|
} |
|
|
|
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to |
|
// to switch to a new underlying Reader. This permits reusing a ReadCloser |
|
// instead of allocating a new one. |
|
type Resetter interface { |
|
// Reset discards any buffered data and resets the Resetter as if it was |
|
// newly initialized with the given reader. |
|
Reset(r io.Reader, dict []byte) error |
|
} |
|
|
|
// The data structure for decoding Huffman tables is based on that of |
|
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits), |
|
// For codes smaller than the table width, there are multiple entries |
|
// (each combination of trailing bits has the same value). For codes |
|
// larger than the table width, the table contains a link to an overflow |
|
// table. The width of each entry in the link table is the maximum code |
|
// size minus the chunk width. |
|
// |
|
// Note that you can do a lookup in the table even without all bits |
|
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes |
|
// have the property that shorter codes come before longer ones, the |
|
// bit length estimate in the result is a lower bound on the actual |
|
// number of bits. |
|
// |
|
// See the following: |
|
// http://www.gzip.org/algorithm.txt |
|
|
|
// chunk & 15 is number of bits |
|
// chunk >> 4 is value, including table link |
|
|
|
const ( |
|
huffmanChunkBits = 9 |
|
huffmanNumChunks = 1 << huffmanChunkBits |
|
huffmanCountMask = 15 |
|
huffmanValueShift = 4 |
|
) |
|
|
|
type huffmanDecoder struct { |
|
maxRead int // the maximum number of bits we can read and not overread |
|
chunks *[huffmanNumChunks]uint16 // chunks as described above |
|
links [][]uint16 // overflow links |
|
linkMask uint32 // mask the width of the link table |
|
} |
|
|
|
// Initialize Huffman decoding tables from array of code lengths. |
|
// Following this function, h is guaranteed to be initialized into a complete |
|
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a |
|
// degenerate case where the tree has only a single symbol with length 1. Empty |
|
// trees are permitted. |
|
func (h *huffmanDecoder) init(lengths []int) bool { |
|
// Sanity enables additional runtime tests during Huffman |
|
// table construction. It's intended to be used during |
|
// development to supplement the currently ad-hoc unit tests. |
|
const sanity = false |
|
|
|
if h.chunks == nil { |
|
h.chunks = &[huffmanNumChunks]uint16{} |
|
} |
|
if h.maxRead != 0 { |
|
*h = huffmanDecoder{chunks: h.chunks, links: h.links} |
|
} |
|
|
|
// Count number of codes of each length, |
|
// compute maxRead and max length. |
|
var count [maxCodeLen]int |
|
var min, max int |
|
for _, n := range lengths { |
|
if n == 0 { |
|
continue |
|
} |
|
if min == 0 || n < min { |
|
min = n |
|
} |
|
if n > max { |
|
max = n |
|
} |
|
count[n&maxCodeLenMask]++ |
|
} |
|
|
|
// Empty tree. The decompressor.huffSym function will fail later if the tree |
|
// is used. Technically, an empty tree is only valid for the HDIST tree and |
|
// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree |
|
// is guaranteed to fail since it will attempt to use the tree to decode the |
|
// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is |
|
// guaranteed to fail later since the compressed data section must be |
|
// composed of at least one symbol (the end-of-block marker). |
|
if max == 0 { |
|
return true |
|
} |
|
|
|
code := 0 |
|
var nextcode [maxCodeLen]int |
|
for i := min; i <= max; i++ { |
|
code <<= 1 |
|
nextcode[i&maxCodeLenMask] = code |
|
code += count[i&maxCodeLenMask] |
|
} |
|
|
|
// Check that the coding is complete (i.e., that we've |
|
// assigned all 2-to-the-max possible bit sequences). |
|
// Exception: To be compatible with zlib, we also need to |
|
// accept degenerate single-code codings. See also |
|
// TestDegenerateHuffmanCoding. |
|
if code != 1<<uint(max) && !(code == 1 && max == 1) { |
|
if debugDecode { |
|
fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)") |
|
} |
|
return false |
|
} |
|
|
|
h.maxRead = min |
|
chunks := h.chunks[:] |
|
for i := range chunks { |
|
chunks[i] = 0 |
|
} |
|
|
|
if max > huffmanChunkBits { |
|
numLinks := 1 << (uint(max) - huffmanChunkBits) |
|
h.linkMask = uint32(numLinks - 1) |
|
|
|
// create link tables |
|
link := nextcode[huffmanChunkBits+1] >> 1 |
|
if cap(h.links) < huffmanNumChunks-link { |
|
h.links = make([][]uint16, huffmanNumChunks-link) |
|
} else { |
|
h.links = h.links[:huffmanNumChunks-link] |
|
} |
|
for j := uint(link); j < huffmanNumChunks; j++ { |
|
reverse := int(bits.Reverse16(uint16(j))) |
|
reverse >>= uint(16 - huffmanChunkBits) |
|
off := j - uint(link) |
|
if sanity && h.chunks[reverse] != 0 { |
|
panic("impossible: overwriting existing chunk") |
|
} |
|
h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1)) |
|
if cap(h.links[off]) < numLinks { |
|
h.links[off] = make([]uint16, numLinks) |
|
} else { |
|
links := h.links[off][:0] |
|
h.links[off] = links[:numLinks] |
|
} |
|
} |
|
} else { |
|
h.links = h.links[:0] |
|
} |
|
|
|
for i, n := range lengths { |
|
if n == 0 { |
|
continue |
|
} |
|
code := nextcode[n] |
|
nextcode[n]++ |
|
chunk := uint16(i<<huffmanValueShift | n) |
|
reverse := int(bits.Reverse16(uint16(code))) |
|
reverse >>= uint(16 - n) |
|
if n <= huffmanChunkBits { |
|
for off := reverse; off < len(h.chunks); off += 1 << uint(n) { |
|
// We should never need to overwrite |
|
// an existing chunk. Also, 0 is |
|
// never a valid chunk, because the |
|
// lower 4 "count" bits should be |
|
// between 1 and 15. |
|
if sanity && h.chunks[off] != 0 { |
|
panic("impossible: overwriting existing chunk") |
|
} |
|
h.chunks[off] = chunk |
|
} |
|
} else { |
|
j := reverse & (huffmanNumChunks - 1) |
|
if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 { |
|
// Longer codes should have been |
|
// associated with a link table above. |
|
panic("impossible: not an indirect chunk") |
|
} |
|
value := h.chunks[j] >> huffmanValueShift |
|
linktab := h.links[value] |
|
reverse >>= huffmanChunkBits |
|
for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) { |
|
if sanity && linktab[off] != 0 { |
|
panic("impossible: overwriting existing chunk") |
|
} |
|
linktab[off] = chunk |
|
} |
|
} |
|
} |
|
|
|
if sanity { |
|
// Above we've sanity checked that we never overwrote |
|
// an existing entry. Here we additionally check that |
|
// we filled the tables completely. |
|
for i, chunk := range h.chunks { |
|
if chunk == 0 { |
|
// As an exception, in the degenerate |
|
// single-code case, we allow odd |
|
// chunks to be missing. |
|
if code == 1 && i%2 == 1 { |
|
continue |
|
} |
|
panic("impossible: missing chunk") |
|
} |
|
} |
|
for _, linktab := range h.links { |
|
for _, chunk := range linktab { |
|
if chunk == 0 { |
|
panic("impossible: missing chunk") |
|
} |
|
} |
|
} |
|
} |
|
|
|
return true |
|
} |
|
|
|
// The actual read interface needed by NewReader. |
|
// If the passed in io.Reader does not also have ReadByte, |
|
// the NewReader will introduce its own buffering. |
|
type Reader interface { |
|
io.Reader |
|
io.ByteReader |
|
} |
|
|
|
// Decompress state. |
|
type decompressor struct { |
|
// Input source. |
|
r Reader |
|
roffset int64 |
|
|
|
// Input bits, in top of b. |
|
b uint32 |
|
nb uint |
|
|
|
// Huffman decoders for literal/length, distance. |
|
h1, h2 huffmanDecoder |
|
|
|
// Length arrays used to define Huffman codes. |
|
bits *[maxNumLit + maxNumDist]int |
|
codebits *[numCodes]int |
|
|
|
// Output history, buffer. |
|
dict dictDecoder |
|
|
|
// Temporary buffer (avoids repeated allocation). |
|
buf [4]byte |
|
|
|
// Next step in the decompression, |
|
// and decompression state. |
|
step func(*decompressor) |
|
stepState int |
|
final bool |
|
err error |
|
toRead []byte |
|
hl, hd *huffmanDecoder |
|
copyLen int |
|
copyDist int |
|
} |
|
|
|
func (f *decompressor) nextBlock() { |
|
for f.nb < 1+2 { |
|
if f.err = f.moreBits(); f.err != nil { |
|
return |
|
} |
|
} |
|
f.final = f.b&1 == 1 |
|
f.b >>= 1 |
|
typ := f.b & 3 |
|
f.b >>= 2 |
|
f.nb -= 1 + 2 |
|
switch typ { |
|
case 0: |
|
f.dataBlock() |
|
case 1: |
|
// compressed, fixed Huffman tables |
|
f.hl = &fixedHuffmanDecoder |
|
f.hd = nil |
|
f.huffmanBlockDecoder()() |
|
case 2: |
|
// compressed, dynamic Huffman tables |
|
if f.err = f.readHuffman(); f.err != nil { |
|
break |
|
} |
|
f.hl = &f.h1 |
|
f.hd = &f.h2 |
|
f.huffmanBlockDecoder()() |
|
default: |
|
// 3 is reserved. |
|
if debugDecode { |
|
fmt.Println("reserved data block encountered") |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
} |
|
} |
|
|
|
func (f *decompressor) Read(b []byte) (int, error) { |
|
for { |
|
if len(f.toRead) > 0 { |
|
n := copy(b, f.toRead) |
|
f.toRead = f.toRead[n:] |
|
if len(f.toRead) == 0 { |
|
return n, f.err |
|
} |
|
return n, nil |
|
} |
|
if f.err != nil { |
|
return 0, f.err |
|
} |
|
f.step(f) |
|
if f.err != nil && len(f.toRead) == 0 { |
|
f.toRead = f.dict.readFlush() // Flush what's left in case of error |
|
} |
|
} |
|
} |
|
|
|
// Support the io.WriteTo interface for io.Copy and friends. |
|
func (f *decompressor) WriteTo(w io.Writer) (int64, error) { |
|
total := int64(0) |
|
flushed := false |
|
for { |
|
if len(f.toRead) > 0 { |
|
n, err := w.Write(f.toRead) |
|
total += int64(n) |
|
if err != nil { |
|
f.err = err |
|
return total, err |
|
} |
|
if n != len(f.toRead) { |
|
return total, io.ErrShortWrite |
|
} |
|
f.toRead = f.toRead[:0] |
|
} |
|
if f.err != nil && flushed { |
|
if f.err == io.EOF { |
|
return total, nil |
|
} |
|
return total, f.err |
|
} |
|
if f.err == nil { |
|
f.step(f) |
|
} |
|
if len(f.toRead) == 0 && f.err != nil && !flushed { |
|
f.toRead = f.dict.readFlush() // Flush what's left in case of error |
|
flushed = true |
|
} |
|
} |
|
} |
|
|
|
func (f *decompressor) Close() error { |
|
if f.err == io.EOF { |
|
return nil |
|
} |
|
return f.err |
|
} |
|
|
|
// RFC 1951 section 3.2.7. |
|
// Compression with dynamic Huffman codes |
|
|
|
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} |
|
|
|
func (f *decompressor) readHuffman() error { |
|
// HLIT[5], HDIST[5], HCLEN[4]. |
|
for f.nb < 5+5+4 { |
|
if err := f.moreBits(); err != nil { |
|
return err |
|
} |
|
} |
|
nlit := int(f.b&0x1F) + 257 |
|
if nlit > maxNumLit { |
|
if debugDecode { |
|
fmt.Println("nlit > maxNumLit", nlit) |
|
} |
|
return CorruptInputError(f.roffset) |
|
} |
|
f.b >>= 5 |
|
ndist := int(f.b&0x1F) + 1 |
|
if ndist > maxNumDist { |
|
if debugDecode { |
|
fmt.Println("ndist > maxNumDist", ndist) |
|
} |
|
return CorruptInputError(f.roffset) |
|
} |
|
f.b >>= 5 |
|
nclen := int(f.b&0xF) + 4 |
|
// numCodes is 19, so nclen is always valid. |
|
f.b >>= 4 |
|
f.nb -= 5 + 5 + 4 |
|
|
|
// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order. |
|
for i := 0; i < nclen; i++ { |
|
for f.nb < 3 { |
|
if err := f.moreBits(); err != nil { |
|
return err |
|
} |
|
} |
|
f.codebits[codeOrder[i]] = int(f.b & 0x7) |
|
f.b >>= 3 |
|
f.nb -= 3 |
|
} |
|
for i := nclen; i < len(codeOrder); i++ { |
|
f.codebits[codeOrder[i]] = 0 |
|
} |
|
if !f.h1.init(f.codebits[0:]) { |
|
if debugDecode { |
|
fmt.Println("init codebits failed") |
|
} |
|
return CorruptInputError(f.roffset) |
|
} |
|
|
|
// HLIT + 257 code lengths, HDIST + 1 code lengths, |
|
// using the code length Huffman code. |
|
for i, n := 0, nlit+ndist; i < n; { |
|
x, err := f.huffSym(&f.h1) |
|
if err != nil { |
|
return err |
|
} |
|
if x < 16 { |
|
// Actual length. |
|
f.bits[i] = x |
|
i++ |
|
continue |
|
} |
|
// Repeat previous length or zero. |
|
var rep int |
|
var nb uint |
|
var b int |
|
switch x { |
|
default: |
|
return InternalError("unexpected length code") |
|
case 16: |
|
rep = 3 |
|
nb = 2 |
|
if i == 0 { |
|
if debugDecode { |
|
fmt.Println("i==0") |
|
} |
|
return CorruptInputError(f.roffset) |
|
} |
|
b = f.bits[i-1] |
|
case 17: |
|
rep = 3 |
|
nb = 3 |
|
b = 0 |
|
case 18: |
|
rep = 11 |
|
nb = 7 |
|
b = 0 |
|
} |
|
for f.nb < nb { |
|
if err := f.moreBits(); err != nil { |
|
if debugDecode { |
|
fmt.Println("morebits:", err) |
|
} |
|
return err |
|
} |
|
} |
|
rep += int(f.b & uint32(1<<nb-1)) |
|
f.b >>= nb |
|
f.nb -= nb |
|
if i+rep > n { |
|
if debugDecode { |
|
fmt.Println("i+rep > n", i, rep, n) |
|
} |
|
return CorruptInputError(f.roffset) |
|
} |
|
for j := 0; j < rep; j++ { |
|
f.bits[i] = b |
|
i++ |
|
} |
|
} |
|
|
|
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) { |
|
if debugDecode { |
|
fmt.Println("init2 failed") |
|
} |
|
return CorruptInputError(f.roffset) |
|
} |
|
|
|
// As an optimization, we can initialize the maxRead bits to read at a time |
|
// for the HLIT tree to the length of the EOB marker since we know that |
|
// every block must terminate with one. This preserves the property that |
|
// we never read any extra bytes after the end of the DEFLATE stream. |
|
if f.h1.maxRead < f.bits[endBlockMarker] { |
|
f.h1.maxRead = f.bits[endBlockMarker] |
|
} |
|
if !f.final { |
|
// If not the final block, the smallest block possible is |
|
// a predefined table, BTYPE=01, with a single EOB marker. |
|
// This will take up 3 + 7 bits. |
|
f.h1.maxRead += 10 |
|
} |
|
|
|
return nil |
|
} |
|
|
|
// Decode a single Huffman block from f. |
|
// hl and hd are the Huffman states for the lit/length values |
|
// and the distance values, respectively. If hd == nil, using the |
|
// fixed distance encoding associated with fixed Huffman blocks. |
|
func (f *decompressor) huffmanBlockGeneric() { |
|
const ( |
|
stateInit = iota // Zero value must be stateInit |
|
stateDict |
|
) |
|
|
|
switch f.stepState { |
|
case stateInit: |
|
goto readLiteral |
|
case stateDict: |
|
goto copyHistory |
|
} |
|
|
|
readLiteral: |
|
// Read literal and/or (length, distance) according to RFC section 3.2.3. |
|
{ |
|
var v int |
|
{ |
|
// Inlined v, err := f.huffSym(f.hl) |
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree |
|
// with single element, huffSym must error on these two edge cases. In both |
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it |
|
// satisfy the n == 0 check below. |
|
n := uint(f.hl.maxRead) |
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, |
|
// but is smart enough to keep local variables in registers, so use nb and b, |
|
// inline call to moreBits and reassign b,nb back to f on return. |
|
nb, b := f.nb, f.b |
|
for { |
|
for nb < n { |
|
c, err := f.r.ReadByte() |
|
if err != nil { |
|
f.b = b |
|
f.nb = nb |
|
f.err = noEOF(err) |
|
return |
|
} |
|
f.roffset++ |
|
b |= uint32(c) << (nb & 31) |
|
nb += 8 |
|
} |
|
chunk := f.hl.chunks[b&(huffmanNumChunks-1)] |
|
n = uint(chunk & huffmanCountMask) |
|
if n > huffmanChunkBits { |
|
chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask] |
|
n = uint(chunk & huffmanCountMask) |
|
} |
|
if n <= nb { |
|
if n == 0 { |
|
f.b = b |
|
f.nb = nb |
|
if debugDecode { |
|
fmt.Println("huffsym: n==0") |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
return |
|
} |
|
f.b = b >> (n & 31) |
|
f.nb = nb - n |
|
v = int(chunk >> huffmanValueShift) |
|
break |
|
} |
|
} |
|
} |
|
|
|
var n uint // number of bits extra |
|
var length int |
|
var err error |
|
switch { |
|
case v < 256: |
|
f.dict.writeByte(byte(v)) |
|
if f.dict.availWrite() == 0 { |
|
f.toRead = f.dict.readFlush() |
|
f.step = (*decompressor).huffmanBlockGeneric |
|
f.stepState = stateInit |
|
return |
|
} |
|
goto readLiteral |
|
case v == 256: |
|
f.finishBlock() |
|
return |
|
// otherwise, reference to older data |
|
case v < 265: |
|
length = v - (257 - 3) |
|
n = 0 |
|
case v < 269: |
|
length = v*2 - (265*2 - 11) |
|
n = 1 |
|
case v < 273: |
|
length = v*4 - (269*4 - 19) |
|
n = 2 |
|
case v < 277: |
|
length = v*8 - (273*8 - 35) |
|
n = 3 |
|
case v < 281: |
|
length = v*16 - (277*16 - 67) |
|
n = 4 |
|
case v < 285: |
|
length = v*32 - (281*32 - 131) |
|
n = 5 |
|
case v < maxNumLit: |
|
length = 258 |
|
n = 0 |
|
default: |
|
if debugDecode { |
|
fmt.Println(v, ">= maxNumLit") |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
return |
|
} |
|
if n > 0 { |
|
for f.nb < n { |
|
if err = f.moreBits(); err != nil { |
|
if debugDecode { |
|
fmt.Println("morebits n>0:", err) |
|
} |
|
f.err = err |
|
return |
|
} |
|
} |
|
length += int(f.b & uint32(1<<n-1)) |
|
f.b >>= n |
|
f.nb -= n |
|
} |
|
|
|
var dist int |
|
if f.hd == nil { |
|
for f.nb < 5 { |
|
if err = f.moreBits(); err != nil { |
|
if debugDecode { |
|
fmt.Println("morebits f.nb<5:", err) |
|
} |
|
f.err = err |
|
return |
|
} |
|
} |
|
dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3))) |
|
f.b >>= 5 |
|
f.nb -= 5 |
|
} else { |
|
if dist, err = f.huffSym(f.hd); err != nil { |
|
if debugDecode { |
|
fmt.Println("huffsym:", err) |
|
} |
|
f.err = err |
|
return |
|
} |
|
} |
|
|
|
switch { |
|
case dist < 4: |
|
dist++ |
|
case dist < maxNumDist: |
|
nb := uint(dist-2) >> 1 |
|
// have 1 bit in bottom of dist, need nb more. |
|
extra := (dist & 1) << nb |
|
for f.nb < nb { |
|
if err = f.moreBits(); err != nil { |
|
if debugDecode { |
|
fmt.Println("morebits f.nb<nb:", err) |
|
} |
|
f.err = err |
|
return |
|
} |
|
} |
|
extra |= int(f.b & uint32(1<<nb-1)) |
|
f.b >>= nb |
|
f.nb -= nb |
|
dist = 1<<(nb+1) + 1 + extra |
|
default: |
|
if debugDecode { |
|
fmt.Println("dist too big:", dist, maxNumDist) |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
return |
|
} |
|
|
|
// No check on length; encoding can be prescient. |
|
if dist > f.dict.histSize() { |
|
if debugDecode { |
|
fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize()) |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
return |
|
} |
|
|
|
f.copyLen, f.copyDist = length, dist |
|
goto copyHistory |
|
} |
|
|
|
copyHistory: |
|
// Perform a backwards copy according to RFC section 3.2.3. |
|
{ |
|
cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen) |
|
if cnt == 0 { |
|
cnt = f.dict.writeCopy(f.copyDist, f.copyLen) |
|
} |
|
f.copyLen -= cnt |
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 { |
|
f.toRead = f.dict.readFlush() |
|
f.step = (*decompressor).huffmanBlockGeneric // We need to continue this work |
|
f.stepState = stateDict |
|
return |
|
} |
|
goto readLiteral |
|
} |
|
} |
|
|
|
// Copy a single uncompressed data block from input to output. |
|
func (f *decompressor) dataBlock() { |
|
// Uncompressed. |
|
// Discard current half-byte. |
|
left := (f.nb) & 7 |
|
f.nb -= left |
|
f.b >>= left |
|
|
|
offBytes := f.nb >> 3 |
|
// Unfilled values will be overwritten. |
|
f.buf[0] = uint8(f.b) |
|
f.buf[1] = uint8(f.b >> 8) |
|
f.buf[2] = uint8(f.b >> 16) |
|
f.buf[3] = uint8(f.b >> 24) |
|
|
|
f.roffset += int64(offBytes) |
|
f.nb, f.b = 0, 0 |
|
|
|
// Length then ones-complement of length. |
|
nr, err := io.ReadFull(f.r, f.buf[offBytes:4]) |
|
f.roffset += int64(nr) |
|
if err != nil { |
|
f.err = noEOF(err) |
|
return |
|
} |
|
n := uint16(f.buf[0]) | uint16(f.buf[1])<<8 |
|
nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8 |
|
if nn != ^n { |
|
if debugDecode { |
|
ncomp := ^n |
|
fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp) |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
return |
|
} |
|
|
|
if n == 0 { |
|
f.toRead = f.dict.readFlush() |
|
f.finishBlock() |
|
return |
|
} |
|
|
|
f.copyLen = int(n) |
|
f.copyData() |
|
} |
|
|
|
// copyData copies f.copyLen bytes from the underlying reader into f.hist. |
|
// It pauses for reads when f.hist is full. |
|
func (f *decompressor) copyData() { |
|
buf := f.dict.writeSlice() |
|
if len(buf) > f.copyLen { |
|
buf = buf[:f.copyLen] |
|
} |
|
|
|
cnt, err := io.ReadFull(f.r, buf) |
|
f.roffset += int64(cnt) |
|
f.copyLen -= cnt |
|
f.dict.writeMark(cnt) |
|
if err != nil { |
|
f.err = noEOF(err) |
|
return |
|
} |
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 { |
|
f.toRead = f.dict.readFlush() |
|
f.step = (*decompressor).copyData |
|
return |
|
} |
|
f.finishBlock() |
|
} |
|
|
|
func (f *decompressor) finishBlock() { |
|
if f.final { |
|
if f.dict.availRead() > 0 { |
|
f.toRead = f.dict.readFlush() |
|
} |
|
f.err = io.EOF |
|
} |
|
f.step = (*decompressor).nextBlock |
|
} |
|
|
|
// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF. |
|
func noEOF(e error) error { |
|
if e == io.EOF { |
|
return io.ErrUnexpectedEOF |
|
} |
|
return e |
|
} |
|
|
|
func (f *decompressor) moreBits() error { |
|
c, err := f.r.ReadByte() |
|
if err != nil { |
|
return noEOF(err) |
|
} |
|
f.roffset++ |
|
f.b |= uint32(c) << f.nb |
|
f.nb += 8 |
|
return nil |
|
} |
|
|
|
// Read the next Huffman-encoded symbol from f according to h. |
|
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) { |
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree |
|
// with single element, huffSym must error on these two edge cases. In both |
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it |
|
// satisfy the n == 0 check below. |
|
n := uint(h.maxRead) |
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, |
|
// but is smart enough to keep local variables in registers, so use nb and b, |
|
// inline call to moreBits and reassign b,nb back to f on return. |
|
nb, b := f.nb, f.b |
|
for { |
|
for nb < n { |
|
c, err := f.r.ReadByte() |
|
if err != nil { |
|
f.b = b |
|
f.nb = nb |
|
return 0, noEOF(err) |
|
} |
|
f.roffset++ |
|
b |= uint32(c) << (nb & 31) |
|
nb += 8 |
|
} |
|
chunk := h.chunks[b&(huffmanNumChunks-1)] |
|
n = uint(chunk & huffmanCountMask) |
|
if n > huffmanChunkBits { |
|
chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask] |
|
n = uint(chunk & huffmanCountMask) |
|
} |
|
if n <= nb { |
|
if n == 0 { |
|
f.b = b |
|
f.nb = nb |
|
if debugDecode { |
|
fmt.Println("huffsym: n==0") |
|
} |
|
f.err = CorruptInputError(f.roffset) |
|
return 0, f.err |
|
} |
|
f.b = b >> (n & 31) |
|
f.nb = nb - n |
|
return int(chunk >> huffmanValueShift), nil |
|
} |
|
} |
|
} |
|
|
|
func makeReader(r io.Reader) Reader { |
|
if rr, ok := r.(Reader); ok { |
|
return rr |
|
} |
|
return bufio.NewReader(r) |
|
} |
|
|
|
func fixedHuffmanDecoderInit() { |
|
fixedOnce.Do(func() { |
|
// These come from the RFC section 3.2.6. |
|
var bits [288]int |
|
for i := 0; i < 144; i++ { |
|
bits[i] = 8 |
|
} |
|
for i := 144; i < 256; i++ { |
|
bits[i] = 9 |
|
} |
|
for i := 256; i < 280; i++ { |
|
bits[i] = 7 |
|
} |
|
for i := 280; i < 288; i++ { |
|
bits[i] = 8 |
|
} |
|
fixedHuffmanDecoder.init(bits[:]) |
|
}) |
|
} |
|
|
|
func (f *decompressor) Reset(r io.Reader, dict []byte) error { |
|
*f = decompressor{ |
|
r: makeReader(r), |
|
bits: f.bits, |
|
codebits: f.codebits, |
|
h1: f.h1, |
|
h2: f.h2, |
|
dict: f.dict, |
|
step: (*decompressor).nextBlock, |
|
} |
|
f.dict.init(maxMatchOffset, dict) |
|
return nil |
|
} |
|
|
|
// NewReader returns a new ReadCloser that can be used |
|
// to read the uncompressed version of r. |
|
// If r does not also implement io.ByteReader, |
|
// the decompressor may read more data than necessary from r. |
|
// It is the caller's responsibility to call Close on the ReadCloser |
|
// when finished reading. |
|
// |
|
// The ReadCloser returned by NewReader also implements Resetter. |
|
func NewReader(r io.Reader) io.ReadCloser { |
|
fixedHuffmanDecoderInit() |
|
|
|
var f decompressor |
|
f.r = makeReader(r) |
|
f.bits = new([maxNumLit + maxNumDist]int) |
|
f.codebits = new([numCodes]int) |
|
f.step = (*decompressor).nextBlock |
|
f.dict.init(maxMatchOffset, nil) |
|
return &f |
|
} |
|
|
|
// NewReaderDict is like NewReader but initializes the reader |
|
// with a preset dictionary. The returned Reader behaves as if |
|
// the uncompressed data stream started with the given dictionary, |
|
// which has already been read. NewReaderDict is typically used |
|
// to read data compressed by NewWriterDict. |
|
// |
|
// The ReadCloser returned by NewReader also implements Resetter. |
|
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser { |
|
fixedHuffmanDecoderInit() |
|
|
|
var f decompressor |
|
f.r = makeReader(r) |
|
f.bits = new([maxNumLit + maxNumDist]int) |
|
f.codebits = new([numCodes]int) |
|
f.step = (*decompressor).nextBlock |
|
f.dict.init(maxMatchOffset, dict) |
|
return &f |
|
}
|
|
|