Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
6.2 KiB
207 lines
6.2 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32, |
|
// checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for |
|
// information. |
|
// |
|
// Polynomials are represented in LSB-first form also known as reversed representation. |
|
// |
|
// See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials |
|
// for information. |
|
package crc32 |
|
|
|
import ( |
|
"hash" |
|
"sync" |
|
) |
|
|
|
// The size of a CRC-32 checksum in bytes. |
|
const Size = 4 |
|
|
|
// Predefined polynomials. |
|
const ( |
|
// IEEE is by far and away the most common CRC-32 polynomial. |
|
// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ... |
|
IEEE = 0xedb88320 |
|
|
|
// Castagnoli's polynomial, used in iSCSI. |
|
// Has better error detection characteristics than IEEE. |
|
// http://dx.doi.org/10.1109/26.231911 |
|
Castagnoli = 0x82f63b78 |
|
|
|
// Koopman's polynomial. |
|
// Also has better error detection characteristics than IEEE. |
|
// http://dx.doi.org/10.1109/DSN.2002.1028931 |
|
Koopman = 0xeb31d82e |
|
) |
|
|
|
// Table is a 256-word table representing the polynomial for efficient processing. |
|
type Table [256]uint32 |
|
|
|
// This file makes use of functions implemented in architecture-specific files. |
|
// The interface that they implement is as follows: |
|
// |
|
// // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE |
|
// // algorithm is available. |
|
// archAvailableIEEE() bool |
|
// |
|
// // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm. |
|
// // It can only be called if archAvailableIEEE() returns true. |
|
// archInitIEEE() |
|
// |
|
// // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if |
|
// // archInitIEEE() was previously called. |
|
// archUpdateIEEE(crc uint32, p []byte) uint32 |
|
// |
|
// // archAvailableCastagnoli reports whether an architecture-specific |
|
// // CRC32-C algorithm is available. |
|
// archAvailableCastagnoli() bool |
|
// |
|
// // archInitCastagnoli initializes the architecture-specific CRC32-C |
|
// // algorithm. It can only be called if archAvailableCastagnoli() returns |
|
// // true. |
|
// archInitCastagnoli() |
|
// |
|
// // archUpdateCastagnoli updates the given CRC32-C. It can only be called |
|
// // if archInitCastagnoli() was previously called. |
|
// archUpdateCastagnoli(crc uint32, p []byte) uint32 |
|
|
|
// castagnoliTable points to a lazily initialized Table for the Castagnoli |
|
// polynomial. MakeTable will always return this value when asked to make a |
|
// Castagnoli table so we can compare against it to find when the caller is |
|
// using this polynomial. |
|
var castagnoliTable *Table |
|
var castagnoliTable8 *slicing8Table |
|
var castagnoliArchImpl bool |
|
var updateCastagnoli func(crc uint32, p []byte) uint32 |
|
var castagnoliOnce sync.Once |
|
|
|
func castagnoliInit() { |
|
castagnoliTable = simpleMakeTable(Castagnoli) |
|
castagnoliArchImpl = archAvailableCastagnoli() |
|
|
|
if castagnoliArchImpl { |
|
archInitCastagnoli() |
|
updateCastagnoli = archUpdateCastagnoli |
|
} else { |
|
// Initialize the slicing-by-8 table. |
|
castagnoliTable8 = slicingMakeTable(Castagnoli) |
|
updateCastagnoli = func(crc uint32, p []byte) uint32 { |
|
return slicingUpdate(crc, castagnoliTable8, p) |
|
} |
|
} |
|
} |
|
|
|
// IEEETable is the table for the IEEE polynomial. |
|
var IEEETable = simpleMakeTable(IEEE) |
|
|
|
// ieeeTable8 is the slicing8Table for IEEE |
|
var ieeeTable8 *slicing8Table |
|
var ieeeArchImpl bool |
|
var updateIEEE func(crc uint32, p []byte) uint32 |
|
var ieeeOnce sync.Once |
|
|
|
func ieeeInit() { |
|
ieeeArchImpl = archAvailableIEEE() |
|
|
|
if ieeeArchImpl { |
|
archInitIEEE() |
|
updateIEEE = archUpdateIEEE |
|
} else { |
|
// Initialize the slicing-by-8 table. |
|
ieeeTable8 = slicingMakeTable(IEEE) |
|
updateIEEE = func(crc uint32, p []byte) uint32 { |
|
return slicingUpdate(crc, ieeeTable8, p) |
|
} |
|
} |
|
} |
|
|
|
// MakeTable returns a Table constructed from the specified polynomial. |
|
// The contents of this Table must not be modified. |
|
func MakeTable(poly uint32) *Table { |
|
switch poly { |
|
case IEEE: |
|
ieeeOnce.Do(ieeeInit) |
|
return IEEETable |
|
case Castagnoli: |
|
castagnoliOnce.Do(castagnoliInit) |
|
return castagnoliTable |
|
} |
|
return simpleMakeTable(poly) |
|
} |
|
|
|
// digest represents the partial evaluation of a checksum. |
|
type digest struct { |
|
crc uint32 |
|
tab *Table |
|
} |
|
|
|
// New creates a new hash.Hash32 computing the CRC-32 checksum |
|
// using the polynomial represented by the Table. |
|
// Its Sum method will lay the value out in big-endian byte order. |
|
func New(tab *Table) hash.Hash32 { |
|
if tab == IEEETable { |
|
ieeeOnce.Do(ieeeInit) |
|
} |
|
return &digest{0, tab} |
|
} |
|
|
|
// NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum |
|
// using the IEEE polynomial. |
|
// Its Sum method will lay the value out in big-endian byte order. |
|
func NewIEEE() hash.Hash32 { return New(IEEETable) } |
|
|
|
func (d *digest) Size() int { return Size } |
|
|
|
func (d *digest) BlockSize() int { return 1 } |
|
|
|
func (d *digest) Reset() { d.crc = 0 } |
|
|
|
// Update returns the result of adding the bytes in p to the crc. |
|
func Update(crc uint32, tab *Table, p []byte) uint32 { |
|
switch tab { |
|
case castagnoliTable: |
|
return updateCastagnoli(crc, p) |
|
case IEEETable: |
|
// Unfortunately, because IEEETable is exported, IEEE may be used without a |
|
// call to MakeTable. We have to make sure it gets initialized in that case. |
|
ieeeOnce.Do(ieeeInit) |
|
return updateIEEE(crc, p) |
|
default: |
|
return simpleUpdate(crc, tab, p) |
|
} |
|
} |
|
|
|
func (d *digest) Write(p []byte) (n int, err error) { |
|
switch d.tab { |
|
case castagnoliTable: |
|
d.crc = updateCastagnoli(d.crc, p) |
|
case IEEETable: |
|
// We only create digest objects through New() which takes care of |
|
// initialization in this case. |
|
d.crc = updateIEEE(d.crc, p) |
|
default: |
|
d.crc = simpleUpdate(d.crc, d.tab, p) |
|
} |
|
return len(p), nil |
|
} |
|
|
|
func (d *digest) Sum32() uint32 { return d.crc } |
|
|
|
func (d *digest) Sum(in []byte) []byte { |
|
s := d.Sum32() |
|
return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s)) |
|
} |
|
|
|
// Checksum returns the CRC-32 checksum of data |
|
// using the polynomial represented by the Table. |
|
func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) } |
|
|
|
// ChecksumIEEE returns the CRC-32 checksum of data |
|
// using the IEEE polynomial. |
|
func ChecksumIEEE(data []byte) uint32 { |
|
ieeeOnce.Do(ieeeInit) |
|
return updateIEEE(0, data) |
|
}
|
|
|