Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
325 lines
11 KiB
325 lines
11 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package rsa |
|
|
|
import ( |
|
"crypto" |
|
"crypto/subtle" |
|
"errors" |
|
"io" |
|
"math/big" |
|
) |
|
|
|
// This file implements encryption and decryption using PKCS#1 v1.5 padding. |
|
|
|
// PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using |
|
// the crypto.Decrypter interface. |
|
type PKCS1v15DecryptOptions struct { |
|
// SessionKeyLen is the length of the session key that is being |
|
// decrypted. If not zero, then a padding error during decryption will |
|
// cause a random plaintext of this length to be returned rather than |
|
// an error. These alternatives happen in constant time. |
|
SessionKeyLen int |
|
} |
|
|
|
// EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. |
|
// The message must be no longer than the length of the public modulus minus 11 bytes. |
|
// |
|
// The rand parameter is used as a source of entropy to ensure that encrypting |
|
// the same message twice doesn't result in the same ciphertext. |
|
// |
|
// WARNING: use of this function to encrypt plaintexts other than session keys |
|
// is dangerous. Use RSA OAEP in new protocols. |
|
func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) { |
|
if err := checkPub(pub); err != nil { |
|
return nil, err |
|
} |
|
k := (pub.N.BitLen() + 7) / 8 |
|
if len(msg) > k-11 { |
|
err = ErrMessageTooLong |
|
return |
|
} |
|
|
|
// EM = 0x00 || 0x02 || PS || 0x00 || M |
|
em := make([]byte, k) |
|
em[1] = 2 |
|
ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] |
|
err = nonZeroRandomBytes(ps, rand) |
|
if err != nil { |
|
return |
|
} |
|
em[len(em)-len(msg)-1] = 0 |
|
copy(mm, msg) |
|
|
|
m := new(big.Int).SetBytes(em) |
|
c := encrypt(new(big.Int), pub, m) |
|
|
|
copyWithLeftPad(em, c.Bytes()) |
|
out = em |
|
return |
|
} |
|
|
|
// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. |
|
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. |
|
// |
|
// Note that whether this function returns an error or not discloses secret |
|
// information. If an attacker can cause this function to run repeatedly and |
|
// learn whether each instance returned an error then they can decrypt and |
|
// forge signatures as if they had the private key. See |
|
// DecryptPKCS1v15SessionKey for a way of solving this problem. |
|
func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) { |
|
if err := checkPub(&priv.PublicKey); err != nil { |
|
return nil, err |
|
} |
|
valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext) |
|
if err != nil { |
|
return |
|
} |
|
if valid == 0 { |
|
return nil, ErrDecryption |
|
} |
|
out = out[index:] |
|
return |
|
} |
|
|
|
// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. |
|
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. |
|
// It returns an error if the ciphertext is the wrong length or if the |
|
// ciphertext is greater than the public modulus. Otherwise, no error is |
|
// returned. If the padding is valid, the resulting plaintext message is copied |
|
// into key. Otherwise, key is unchanged. These alternatives occur in constant |
|
// time. It is intended that the user of this function generate a random |
|
// session key beforehand and continue the protocol with the resulting value. |
|
// This will remove any possibility that an attacker can learn any information |
|
// about the plaintext. |
|
// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA |
|
// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology |
|
// (Crypto '98). |
|
// |
|
// Note that if the session key is too small then it may be possible for an |
|
// attacker to brute-force it. If they can do that then they can learn whether |
|
// a random value was used (because it'll be different for the same ciphertext) |
|
// and thus whether the padding was correct. This defeats the point of this |
|
// function. Using at least a 16-byte key will protect against this attack. |
|
func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) { |
|
if err := checkPub(&priv.PublicKey); err != nil { |
|
return err |
|
} |
|
k := (priv.N.BitLen() + 7) / 8 |
|
if k-(len(key)+3+8) < 0 { |
|
return ErrDecryption |
|
} |
|
|
|
valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext) |
|
if err != nil { |
|
return |
|
} |
|
|
|
if len(em) != k { |
|
// This should be impossible because decryptPKCS1v15 always |
|
// returns the full slice. |
|
return ErrDecryption |
|
} |
|
|
|
valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) |
|
subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) |
|
return |
|
} |
|
|
|
// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if |
|
// rand is not nil. It returns one or zero in valid that indicates whether the |
|
// plaintext was correctly structured. In either case, the plaintext is |
|
// returned in em so that it may be read independently of whether it was valid |
|
// in order to maintain constant memory access patterns. If the plaintext was |
|
// valid then index contains the index of the original message in em. |
|
func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { |
|
k := (priv.N.BitLen() + 7) / 8 |
|
if k < 11 { |
|
err = ErrDecryption |
|
return |
|
} |
|
|
|
c := new(big.Int).SetBytes(ciphertext) |
|
m, err := decrypt(rand, priv, c) |
|
if err != nil { |
|
return |
|
} |
|
|
|
em = leftPad(m.Bytes(), k) |
|
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) |
|
secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) |
|
|
|
// The remainder of the plaintext must be a string of non-zero random |
|
// octets, followed by a 0, followed by the message. |
|
// lookingForIndex: 1 iff we are still looking for the zero. |
|
// index: the offset of the first zero byte. |
|
lookingForIndex := 1 |
|
|
|
for i := 2; i < len(em); i++ { |
|
equals0 := subtle.ConstantTimeByteEq(em[i], 0) |
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) |
|
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) |
|
} |
|
|
|
// The PS padding must be at least 8 bytes long, and it starts two |
|
// bytes into em. |
|
validPS := subtle.ConstantTimeLessOrEq(2+8, index) |
|
|
|
valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS |
|
index = subtle.ConstantTimeSelect(valid, index+1, 0) |
|
return valid, em, index, nil |
|
} |
|
|
|
// nonZeroRandomBytes fills the given slice with non-zero random octets. |
|
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) { |
|
_, err = io.ReadFull(rand, s) |
|
if err != nil { |
|
return |
|
} |
|
|
|
for i := 0; i < len(s); i++ { |
|
for s[i] == 0 { |
|
_, err = io.ReadFull(rand, s[i:i+1]) |
|
if err != nil { |
|
return |
|
} |
|
// In tests, the PRNG may return all zeros so we do |
|
// this to break the loop. |
|
s[i] ^= 0x42 |
|
} |
|
} |
|
|
|
return |
|
} |
|
|
|
// These are ASN1 DER structures: |
|
// DigestInfo ::= SEQUENCE { |
|
// digestAlgorithm AlgorithmIdentifier, |
|
// digest OCTET STRING |
|
// } |
|
// For performance, we don't use the generic ASN1 encoder. Rather, we |
|
// precompute a prefix of the digest value that makes a valid ASN1 DER string |
|
// with the correct contents. |
|
var hashPrefixes = map[crypto.Hash][]byte{ |
|
crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, |
|
crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, |
|
crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, |
|
crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, |
|
crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, |
|
crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, |
|
crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. |
|
crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, |
|
} |
|
|
|
// SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. |
|
// Note that hashed must be the result of hashing the input message using the |
|
// given hash function. If hash is zero, hashed is signed directly. This isn't |
|
// advisable except for interoperability. |
|
// |
|
// If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks. |
|
// |
|
// This function is deterministic. Thus, if the set of possible messages is |
|
// small, an attacker may be able to build a map from messages to signatures |
|
// and identify the signed messages. As ever, signatures provide authenticity, |
|
// not confidentiality. |
|
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) { |
|
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) |
|
if err != nil { |
|
return |
|
} |
|
|
|
tLen := len(prefix) + hashLen |
|
k := (priv.N.BitLen() + 7) / 8 |
|
if k < tLen+11 { |
|
return nil, ErrMessageTooLong |
|
} |
|
|
|
// EM = 0x00 || 0x01 || PS || 0x00 || T |
|
em := make([]byte, k) |
|
em[1] = 1 |
|
for i := 2; i < k-tLen-1; i++ { |
|
em[i] = 0xff |
|
} |
|
copy(em[k-tLen:k-hashLen], prefix) |
|
copy(em[k-hashLen:k], hashed) |
|
|
|
m := new(big.Int).SetBytes(em) |
|
c, err := decryptAndCheck(rand, priv, m) |
|
if err != nil { |
|
return |
|
} |
|
|
|
copyWithLeftPad(em, c.Bytes()) |
|
s = em |
|
return |
|
} |
|
|
|
// VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. |
|
// hashed is the result of hashing the input message using the given hash |
|
// function and sig is the signature. A valid signature is indicated by |
|
// returning a nil error. If hash is zero then hashed is used directly. This |
|
// isn't advisable except for interoperability. |
|
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) { |
|
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) |
|
if err != nil { |
|
return |
|
} |
|
|
|
tLen := len(prefix) + hashLen |
|
k := (pub.N.BitLen() + 7) / 8 |
|
if k < tLen+11 { |
|
err = ErrVerification |
|
return |
|
} |
|
|
|
c := new(big.Int).SetBytes(sig) |
|
m := encrypt(new(big.Int), pub, c) |
|
em := leftPad(m.Bytes(), k) |
|
// EM = 0x00 || 0x01 || PS || 0x00 || T |
|
|
|
ok := subtle.ConstantTimeByteEq(em[0], 0) |
|
ok &= subtle.ConstantTimeByteEq(em[1], 1) |
|
ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) |
|
ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) |
|
ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) |
|
|
|
for i := 2; i < k-tLen-1; i++ { |
|
ok &= subtle.ConstantTimeByteEq(em[i], 0xff) |
|
} |
|
|
|
if ok != 1 { |
|
return ErrVerification |
|
} |
|
|
|
return nil |
|
} |
|
|
|
func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { |
|
// Special case: crypto.Hash(0) is used to indicate that the data is |
|
// signed directly. |
|
if hash == 0 { |
|
return inLen, nil, nil |
|
} |
|
|
|
hashLen = hash.Size() |
|
if inLen != hashLen { |
|
return 0, nil, errors.New("crypto/rsa: input must be hashed message") |
|
} |
|
prefix, ok := hashPrefixes[hash] |
|
if !ok { |
|
return 0, nil, errors.New("crypto/rsa: unsupported hash function") |
|
} |
|
return |
|
} |
|
|
|
// copyWithLeftPad copies src to the end of dest, padding with zero bytes as |
|
// needed. |
|
func copyWithLeftPad(dest, src []byte) { |
|
numPaddingBytes := len(dest) - len(src) |
|
for i := 0; i < numPaddingBytes; i++ { |
|
dest[i] = 0 |
|
} |
|
copy(dest[numPaddingBytes:], src) |
|
}
|
|
|