Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
894 lines
24 KiB
894 lines
24 KiB
// Go support for Protocol Buffers - Google's data interchange format |
|
// |
|
// Copyright 2010 The Go Authors. All rights reserved. |
|
// https://github.com/golang/protobuf |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
/* |
|
Package proto converts data structures to and from the wire format of |
|
protocol buffers. It works in concert with the Go source code generated |
|
for .proto files by the protocol compiler. |
|
|
|
A summary of the properties of the protocol buffer interface |
|
for a protocol buffer variable v: |
|
|
|
- Names are turned from camel_case to CamelCase for export. |
|
- There are no methods on v to set fields; just treat |
|
them as structure fields. |
|
- There are getters that return a field's value if set, |
|
and return the field's default value if unset. |
|
The getters work even if the receiver is a nil message. |
|
- The zero value for a struct is its correct initialization state. |
|
All desired fields must be set before marshaling. |
|
- A Reset() method will restore a protobuf struct to its zero state. |
|
- Non-repeated fields are pointers to the values; nil means unset. |
|
That is, optional or required field int32 f becomes F *int32. |
|
- Repeated fields are slices. |
|
- Helper functions are available to aid the setting of fields. |
|
msg.Foo = proto.String("hello") // set field |
|
- Constants are defined to hold the default values of all fields that |
|
have them. They have the form Default_StructName_FieldName. |
|
Because the getter methods handle defaulted values, |
|
direct use of these constants should be rare. |
|
- Enums are given type names and maps from names to values. |
|
Enum values are prefixed by the enclosing message's name, or by the |
|
enum's type name if it is a top-level enum. Enum types have a String |
|
method, and a Enum method to assist in message construction. |
|
- Nested messages, groups and enums have type names prefixed with the name of |
|
the surrounding message type. |
|
- Extensions are given descriptor names that start with E_, |
|
followed by an underscore-delimited list of the nested messages |
|
that contain it (if any) followed by the CamelCased name of the |
|
extension field itself. HasExtension, ClearExtension, GetExtension |
|
and SetExtension are functions for manipulating extensions. |
|
- Oneof field sets are given a single field in their message, |
|
with distinguished wrapper types for each possible field value. |
|
- Marshal and Unmarshal are functions to encode and decode the wire format. |
|
|
|
When the .proto file specifies `syntax="proto3"`, there are some differences: |
|
|
|
- Non-repeated fields of non-message type are values instead of pointers. |
|
- Getters are only generated for message and oneof fields. |
|
- Enum types do not get an Enum method. |
|
|
|
The simplest way to describe this is to see an example. |
|
Given file test.proto, containing |
|
|
|
package example; |
|
|
|
enum FOO { X = 17; } |
|
|
|
message Test { |
|
required string label = 1; |
|
optional int32 type = 2 [default=77]; |
|
repeated int64 reps = 3; |
|
optional group OptionalGroup = 4 { |
|
required string RequiredField = 5; |
|
} |
|
oneof union { |
|
int32 number = 6; |
|
string name = 7; |
|
} |
|
} |
|
|
|
The resulting file, test.pb.go, is: |
|
|
|
package example |
|
|
|
import proto "github.com/golang/protobuf/proto" |
|
import math "math" |
|
|
|
type FOO int32 |
|
const ( |
|
FOO_X FOO = 17 |
|
) |
|
var FOO_name = map[int32]string{ |
|
17: "X", |
|
} |
|
var FOO_value = map[string]int32{ |
|
"X": 17, |
|
} |
|
|
|
func (x FOO) Enum() *FOO { |
|
p := new(FOO) |
|
*p = x |
|
return p |
|
} |
|
func (x FOO) String() string { |
|
return proto.EnumName(FOO_name, int32(x)) |
|
} |
|
func (x *FOO) UnmarshalJSON(data []byte) error { |
|
value, err := proto.UnmarshalJSONEnum(FOO_value, data) |
|
if err != nil { |
|
return err |
|
} |
|
*x = FOO(value) |
|
return nil |
|
} |
|
|
|
type Test struct { |
|
Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"` |
|
Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"` |
|
Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"` |
|
Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"` |
|
// Types that are valid to be assigned to Union: |
|
// *Test_Number |
|
// *Test_Name |
|
Union isTest_Union `protobuf_oneof:"union"` |
|
XXX_unrecognized []byte `json:"-"` |
|
} |
|
func (m *Test) Reset() { *m = Test{} } |
|
func (m *Test) String() string { return proto.CompactTextString(m) } |
|
func (*Test) ProtoMessage() {} |
|
|
|
type isTest_Union interface { |
|
isTest_Union() |
|
} |
|
|
|
type Test_Number struct { |
|
Number int32 `protobuf:"varint,6,opt,name=number"` |
|
} |
|
type Test_Name struct { |
|
Name string `protobuf:"bytes,7,opt,name=name"` |
|
} |
|
|
|
func (*Test_Number) isTest_Union() {} |
|
func (*Test_Name) isTest_Union() {} |
|
|
|
func (m *Test) GetUnion() isTest_Union { |
|
if m != nil { |
|
return m.Union |
|
} |
|
return nil |
|
} |
|
const Default_Test_Type int32 = 77 |
|
|
|
func (m *Test) GetLabel() string { |
|
if m != nil && m.Label != nil { |
|
return *m.Label |
|
} |
|
return "" |
|
} |
|
|
|
func (m *Test) GetType() int32 { |
|
if m != nil && m.Type != nil { |
|
return *m.Type |
|
} |
|
return Default_Test_Type |
|
} |
|
|
|
func (m *Test) GetOptionalgroup() *Test_OptionalGroup { |
|
if m != nil { |
|
return m.Optionalgroup |
|
} |
|
return nil |
|
} |
|
|
|
type Test_OptionalGroup struct { |
|
RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"` |
|
} |
|
func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} } |
|
func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) } |
|
|
|
func (m *Test_OptionalGroup) GetRequiredField() string { |
|
if m != nil && m.RequiredField != nil { |
|
return *m.RequiredField |
|
} |
|
return "" |
|
} |
|
|
|
func (m *Test) GetNumber() int32 { |
|
if x, ok := m.GetUnion().(*Test_Number); ok { |
|
return x.Number |
|
} |
|
return 0 |
|
} |
|
|
|
func (m *Test) GetName() string { |
|
if x, ok := m.GetUnion().(*Test_Name); ok { |
|
return x.Name |
|
} |
|
return "" |
|
} |
|
|
|
func init() { |
|
proto.RegisterEnum("example.FOO", FOO_name, FOO_value) |
|
} |
|
|
|
To create and play with a Test object: |
|
|
|
package main |
|
|
|
import ( |
|
"log" |
|
|
|
"github.com/golang/protobuf/proto" |
|
pb "./example.pb" |
|
) |
|
|
|
func main() { |
|
test := &pb.Test{ |
|
Label: proto.String("hello"), |
|
Type: proto.Int32(17), |
|
Reps: []int64{1, 2, 3}, |
|
Optionalgroup: &pb.Test_OptionalGroup{ |
|
RequiredField: proto.String("good bye"), |
|
}, |
|
Union: &pb.Test_Name{"fred"}, |
|
} |
|
data, err := proto.Marshal(test) |
|
if err != nil { |
|
log.Fatal("marshaling error: ", err) |
|
} |
|
newTest := &pb.Test{} |
|
err = proto.Unmarshal(data, newTest) |
|
if err != nil { |
|
log.Fatal("unmarshaling error: ", err) |
|
} |
|
// Now test and newTest contain the same data. |
|
if test.GetLabel() != newTest.GetLabel() { |
|
log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel()) |
|
} |
|
// Use a type switch to determine which oneof was set. |
|
switch u := test.Union.(type) { |
|
case *pb.Test_Number: // u.Number contains the number. |
|
case *pb.Test_Name: // u.Name contains the string. |
|
} |
|
// etc. |
|
} |
|
*/ |
|
package proto |
|
|
|
import ( |
|
"encoding/json" |
|
"fmt" |
|
"log" |
|
"reflect" |
|
"sort" |
|
"strconv" |
|
"sync" |
|
) |
|
|
|
// Message is implemented by generated protocol buffer messages. |
|
type Message interface { |
|
Reset() |
|
String() string |
|
ProtoMessage() |
|
} |
|
|
|
// Stats records allocation details about the protocol buffer encoders |
|
// and decoders. Useful for tuning the library itself. |
|
type Stats struct { |
|
Emalloc uint64 // mallocs in encode |
|
Dmalloc uint64 // mallocs in decode |
|
Encode uint64 // number of encodes |
|
Decode uint64 // number of decodes |
|
Chit uint64 // number of cache hits |
|
Cmiss uint64 // number of cache misses |
|
Size uint64 // number of sizes |
|
} |
|
|
|
// Set to true to enable stats collection. |
|
const collectStats = false |
|
|
|
var stats Stats |
|
|
|
// GetStats returns a copy of the global Stats structure. |
|
func GetStats() Stats { return stats } |
|
|
|
// A Buffer is a buffer manager for marshaling and unmarshaling |
|
// protocol buffers. It may be reused between invocations to |
|
// reduce memory usage. It is not necessary to use a Buffer; |
|
// the global functions Marshal and Unmarshal create a |
|
// temporary Buffer and are fine for most applications. |
|
type Buffer struct { |
|
buf []byte // encode/decode byte stream |
|
index int // write point |
|
|
|
// pools of basic types to amortize allocation. |
|
bools []bool |
|
uint32s []uint32 |
|
uint64s []uint64 |
|
|
|
// extra pools, only used with pointer_reflect.go |
|
int32s []int32 |
|
int64s []int64 |
|
float32s []float32 |
|
float64s []float64 |
|
} |
|
|
|
// NewBuffer allocates a new Buffer and initializes its internal data to |
|
// the contents of the argument slice. |
|
func NewBuffer(e []byte) *Buffer { |
|
return &Buffer{buf: e} |
|
} |
|
|
|
// Reset resets the Buffer, ready for marshaling a new protocol buffer. |
|
func (p *Buffer) Reset() { |
|
p.buf = p.buf[0:0] // for reading/writing |
|
p.index = 0 // for reading |
|
} |
|
|
|
// SetBuf replaces the internal buffer with the slice, |
|
// ready for unmarshaling the contents of the slice. |
|
func (p *Buffer) SetBuf(s []byte) { |
|
p.buf = s |
|
p.index = 0 |
|
} |
|
|
|
// Bytes returns the contents of the Buffer. |
|
func (p *Buffer) Bytes() []byte { return p.buf } |
|
|
|
/* |
|
* Helper routines for simplifying the creation of optional fields of basic type. |
|
*/ |
|
|
|
// Bool is a helper routine that allocates a new bool value |
|
// to store v and returns a pointer to it. |
|
func Bool(v bool) *bool { |
|
return &v |
|
} |
|
|
|
// Int32 is a helper routine that allocates a new int32 value |
|
// to store v and returns a pointer to it. |
|
func Int32(v int32) *int32 { |
|
return &v |
|
} |
|
|
|
// Int is a helper routine that allocates a new int32 value |
|
// to store v and returns a pointer to it, but unlike Int32 |
|
// its argument value is an int. |
|
func Int(v int) *int32 { |
|
p := new(int32) |
|
*p = int32(v) |
|
return p |
|
} |
|
|
|
// Int64 is a helper routine that allocates a new int64 value |
|
// to store v and returns a pointer to it. |
|
func Int64(v int64) *int64 { |
|
return &v |
|
} |
|
|
|
// Float32 is a helper routine that allocates a new float32 value |
|
// to store v and returns a pointer to it. |
|
func Float32(v float32) *float32 { |
|
return &v |
|
} |
|
|
|
// Float64 is a helper routine that allocates a new float64 value |
|
// to store v and returns a pointer to it. |
|
func Float64(v float64) *float64 { |
|
return &v |
|
} |
|
|
|
// Uint32 is a helper routine that allocates a new uint32 value |
|
// to store v and returns a pointer to it. |
|
func Uint32(v uint32) *uint32 { |
|
return &v |
|
} |
|
|
|
// Uint64 is a helper routine that allocates a new uint64 value |
|
// to store v and returns a pointer to it. |
|
func Uint64(v uint64) *uint64 { |
|
return &v |
|
} |
|
|
|
// String is a helper routine that allocates a new string value |
|
// to store v and returns a pointer to it. |
|
func String(v string) *string { |
|
return &v |
|
} |
|
|
|
// EnumName is a helper function to simplify printing protocol buffer enums |
|
// by name. Given an enum map and a value, it returns a useful string. |
|
func EnumName(m map[int32]string, v int32) string { |
|
s, ok := m[v] |
|
if ok { |
|
return s |
|
} |
|
return strconv.Itoa(int(v)) |
|
} |
|
|
|
// UnmarshalJSONEnum is a helper function to simplify recovering enum int values |
|
// from their JSON-encoded representation. Given a map from the enum's symbolic |
|
// names to its int values, and a byte buffer containing the JSON-encoded |
|
// value, it returns an int32 that can be cast to the enum type by the caller. |
|
// |
|
// The function can deal with both JSON representations, numeric and symbolic. |
|
func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) { |
|
if data[0] == '"' { |
|
// New style: enums are strings. |
|
var repr string |
|
if err := json.Unmarshal(data, &repr); err != nil { |
|
return -1, err |
|
} |
|
val, ok := m[repr] |
|
if !ok { |
|
return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr) |
|
} |
|
return val, nil |
|
} |
|
// Old style: enums are ints. |
|
var val int32 |
|
if err := json.Unmarshal(data, &val); err != nil { |
|
return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName) |
|
} |
|
return val, nil |
|
} |
|
|
|
// DebugPrint dumps the encoded data in b in a debugging format with a header |
|
// including the string s. Used in testing but made available for general debugging. |
|
func (p *Buffer) DebugPrint(s string, b []byte) { |
|
var u uint64 |
|
|
|
obuf := p.buf |
|
index := p.index |
|
p.buf = b |
|
p.index = 0 |
|
depth := 0 |
|
|
|
fmt.Printf("\n--- %s ---\n", s) |
|
|
|
out: |
|
for { |
|
for i := 0; i < depth; i++ { |
|
fmt.Print(" ") |
|
} |
|
|
|
index := p.index |
|
if index == len(p.buf) { |
|
break |
|
} |
|
|
|
op, err := p.DecodeVarint() |
|
if err != nil { |
|
fmt.Printf("%3d: fetching op err %v\n", index, err) |
|
break out |
|
} |
|
tag := op >> 3 |
|
wire := op & 7 |
|
|
|
switch wire { |
|
default: |
|
fmt.Printf("%3d: t=%3d unknown wire=%d\n", |
|
index, tag, wire) |
|
break out |
|
|
|
case WireBytes: |
|
var r []byte |
|
|
|
r, err = p.DecodeRawBytes(false) |
|
if err != nil { |
|
break out |
|
} |
|
fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r)) |
|
if len(r) <= 6 { |
|
for i := 0; i < len(r); i++ { |
|
fmt.Printf(" %.2x", r[i]) |
|
} |
|
} else { |
|
for i := 0; i < 3; i++ { |
|
fmt.Printf(" %.2x", r[i]) |
|
} |
|
fmt.Printf(" ..") |
|
for i := len(r) - 3; i < len(r); i++ { |
|
fmt.Printf(" %.2x", r[i]) |
|
} |
|
} |
|
fmt.Printf("\n") |
|
|
|
case WireFixed32: |
|
u, err = p.DecodeFixed32() |
|
if err != nil { |
|
fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err) |
|
break out |
|
} |
|
fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u) |
|
|
|
case WireFixed64: |
|
u, err = p.DecodeFixed64() |
|
if err != nil { |
|
fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err) |
|
break out |
|
} |
|
fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u) |
|
|
|
case WireVarint: |
|
u, err = p.DecodeVarint() |
|
if err != nil { |
|
fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err) |
|
break out |
|
} |
|
fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u) |
|
|
|
case WireStartGroup: |
|
fmt.Printf("%3d: t=%3d start\n", index, tag) |
|
depth++ |
|
|
|
case WireEndGroup: |
|
depth-- |
|
fmt.Printf("%3d: t=%3d end\n", index, tag) |
|
} |
|
} |
|
|
|
if depth != 0 { |
|
fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth) |
|
} |
|
fmt.Printf("\n") |
|
|
|
p.buf = obuf |
|
p.index = index |
|
} |
|
|
|
// SetDefaults sets unset protocol buffer fields to their default values. |
|
// It only modifies fields that are both unset and have defined defaults. |
|
// It recursively sets default values in any non-nil sub-messages. |
|
func SetDefaults(pb Message) { |
|
setDefaults(reflect.ValueOf(pb), true, false) |
|
} |
|
|
|
// v is a pointer to a struct. |
|
func setDefaults(v reflect.Value, recur, zeros bool) { |
|
v = v.Elem() |
|
|
|
defaultMu.RLock() |
|
dm, ok := defaults[v.Type()] |
|
defaultMu.RUnlock() |
|
if !ok { |
|
dm = buildDefaultMessage(v.Type()) |
|
defaultMu.Lock() |
|
defaults[v.Type()] = dm |
|
defaultMu.Unlock() |
|
} |
|
|
|
for _, sf := range dm.scalars { |
|
f := v.Field(sf.index) |
|
if !f.IsNil() { |
|
// field already set |
|
continue |
|
} |
|
dv := sf.value |
|
if dv == nil && !zeros { |
|
// no explicit default, and don't want to set zeros |
|
continue |
|
} |
|
fptr := f.Addr().Interface() // **T |
|
// TODO: Consider batching the allocations we do here. |
|
switch sf.kind { |
|
case reflect.Bool: |
|
b := new(bool) |
|
if dv != nil { |
|
*b = dv.(bool) |
|
} |
|
*(fptr.(**bool)) = b |
|
case reflect.Float32: |
|
f := new(float32) |
|
if dv != nil { |
|
*f = dv.(float32) |
|
} |
|
*(fptr.(**float32)) = f |
|
case reflect.Float64: |
|
f := new(float64) |
|
if dv != nil { |
|
*f = dv.(float64) |
|
} |
|
*(fptr.(**float64)) = f |
|
case reflect.Int32: |
|
// might be an enum |
|
if ft := f.Type(); ft != int32PtrType { |
|
// enum |
|
f.Set(reflect.New(ft.Elem())) |
|
if dv != nil { |
|
f.Elem().SetInt(int64(dv.(int32))) |
|
} |
|
} else { |
|
// int32 field |
|
i := new(int32) |
|
if dv != nil { |
|
*i = dv.(int32) |
|
} |
|
*(fptr.(**int32)) = i |
|
} |
|
case reflect.Int64: |
|
i := new(int64) |
|
if dv != nil { |
|
*i = dv.(int64) |
|
} |
|
*(fptr.(**int64)) = i |
|
case reflect.String: |
|
s := new(string) |
|
if dv != nil { |
|
*s = dv.(string) |
|
} |
|
*(fptr.(**string)) = s |
|
case reflect.Uint8: |
|
// exceptional case: []byte |
|
var b []byte |
|
if dv != nil { |
|
db := dv.([]byte) |
|
b = make([]byte, len(db)) |
|
copy(b, db) |
|
} else { |
|
b = []byte{} |
|
} |
|
*(fptr.(*[]byte)) = b |
|
case reflect.Uint32: |
|
u := new(uint32) |
|
if dv != nil { |
|
*u = dv.(uint32) |
|
} |
|
*(fptr.(**uint32)) = u |
|
case reflect.Uint64: |
|
u := new(uint64) |
|
if dv != nil { |
|
*u = dv.(uint64) |
|
} |
|
*(fptr.(**uint64)) = u |
|
default: |
|
log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind) |
|
} |
|
} |
|
|
|
for _, ni := range dm.nested { |
|
f := v.Field(ni) |
|
// f is *T or []*T or map[T]*T |
|
switch f.Kind() { |
|
case reflect.Ptr: |
|
if f.IsNil() { |
|
continue |
|
} |
|
setDefaults(f, recur, zeros) |
|
|
|
case reflect.Slice: |
|
for i := 0; i < f.Len(); i++ { |
|
e := f.Index(i) |
|
if e.IsNil() { |
|
continue |
|
} |
|
setDefaults(e, recur, zeros) |
|
} |
|
|
|
case reflect.Map: |
|
for _, k := range f.MapKeys() { |
|
e := f.MapIndex(k) |
|
if e.IsNil() { |
|
continue |
|
} |
|
setDefaults(e, recur, zeros) |
|
} |
|
} |
|
} |
|
} |
|
|
|
var ( |
|
// defaults maps a protocol buffer struct type to a slice of the fields, |
|
// with its scalar fields set to their proto-declared non-zero default values. |
|
defaultMu sync.RWMutex |
|
defaults = make(map[reflect.Type]defaultMessage) |
|
|
|
int32PtrType = reflect.TypeOf((*int32)(nil)) |
|
) |
|
|
|
// defaultMessage represents information about the default values of a message. |
|
type defaultMessage struct { |
|
scalars []scalarField |
|
nested []int // struct field index of nested messages |
|
} |
|
|
|
type scalarField struct { |
|
index int // struct field index |
|
kind reflect.Kind // element type (the T in *T or []T) |
|
value interface{} // the proto-declared default value, or nil |
|
} |
|
|
|
// t is a struct type. |
|
func buildDefaultMessage(t reflect.Type) (dm defaultMessage) { |
|
sprop := GetProperties(t) |
|
for _, prop := range sprop.Prop { |
|
fi, ok := sprop.decoderTags.get(prop.Tag) |
|
if !ok { |
|
// XXX_unrecognized |
|
continue |
|
} |
|
ft := t.Field(fi).Type |
|
|
|
sf, nested, err := fieldDefault(ft, prop) |
|
switch { |
|
case err != nil: |
|
log.Print(err) |
|
case nested: |
|
dm.nested = append(dm.nested, fi) |
|
case sf != nil: |
|
sf.index = fi |
|
dm.scalars = append(dm.scalars, *sf) |
|
} |
|
} |
|
|
|
return dm |
|
} |
|
|
|
// fieldDefault returns the scalarField for field type ft. |
|
// sf will be nil if the field can not have a default. |
|
// nestedMessage will be true if this is a nested message. |
|
// Note that sf.index is not set on return. |
|
func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) { |
|
var canHaveDefault bool |
|
switch ft.Kind() { |
|
case reflect.Ptr: |
|
if ft.Elem().Kind() == reflect.Struct { |
|
nestedMessage = true |
|
} else { |
|
canHaveDefault = true // proto2 scalar field |
|
} |
|
|
|
case reflect.Slice: |
|
switch ft.Elem().Kind() { |
|
case reflect.Ptr: |
|
nestedMessage = true // repeated message |
|
case reflect.Uint8: |
|
canHaveDefault = true // bytes field |
|
} |
|
|
|
case reflect.Map: |
|
if ft.Elem().Kind() == reflect.Ptr { |
|
nestedMessage = true // map with message values |
|
} |
|
} |
|
|
|
if !canHaveDefault { |
|
if nestedMessage { |
|
return nil, true, nil |
|
} |
|
return nil, false, nil |
|
} |
|
|
|
// We now know that ft is a pointer or slice. |
|
sf = &scalarField{kind: ft.Elem().Kind()} |
|
|
|
// scalar fields without defaults |
|
if !prop.HasDefault { |
|
return sf, false, nil |
|
} |
|
|
|
// a scalar field: either *T or []byte |
|
switch ft.Elem().Kind() { |
|
case reflect.Bool: |
|
x, err := strconv.ParseBool(prop.Default) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err) |
|
} |
|
sf.value = x |
|
case reflect.Float32: |
|
x, err := strconv.ParseFloat(prop.Default, 32) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err) |
|
} |
|
sf.value = float32(x) |
|
case reflect.Float64: |
|
x, err := strconv.ParseFloat(prop.Default, 64) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err) |
|
} |
|
sf.value = x |
|
case reflect.Int32: |
|
x, err := strconv.ParseInt(prop.Default, 10, 32) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err) |
|
} |
|
sf.value = int32(x) |
|
case reflect.Int64: |
|
x, err := strconv.ParseInt(prop.Default, 10, 64) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err) |
|
} |
|
sf.value = x |
|
case reflect.String: |
|
sf.value = prop.Default |
|
case reflect.Uint8: |
|
// []byte (not *uint8) |
|
sf.value = []byte(prop.Default) |
|
case reflect.Uint32: |
|
x, err := strconv.ParseUint(prop.Default, 10, 32) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err) |
|
} |
|
sf.value = uint32(x) |
|
case reflect.Uint64: |
|
x, err := strconv.ParseUint(prop.Default, 10, 64) |
|
if err != nil { |
|
return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err) |
|
} |
|
sf.value = x |
|
default: |
|
return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind()) |
|
} |
|
|
|
return sf, false, nil |
|
} |
|
|
|
// Map fields may have key types of non-float scalars, strings and enums. |
|
// The easiest way to sort them in some deterministic order is to use fmt. |
|
// If this turns out to be inefficient we can always consider other options, |
|
// such as doing a Schwartzian transform. |
|
|
|
func mapKeys(vs []reflect.Value) sort.Interface { |
|
s := mapKeySorter{ |
|
vs: vs, |
|
// default Less function: textual comparison |
|
less: func(a, b reflect.Value) bool { |
|
return fmt.Sprint(a.Interface()) < fmt.Sprint(b.Interface()) |
|
}, |
|
} |
|
|
|
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps; |
|
// numeric keys are sorted numerically. |
|
if len(vs) == 0 { |
|
return s |
|
} |
|
switch vs[0].Kind() { |
|
case reflect.Int32, reflect.Int64: |
|
s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() } |
|
case reflect.Uint32, reflect.Uint64: |
|
s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() } |
|
} |
|
|
|
return s |
|
} |
|
|
|
type mapKeySorter struct { |
|
vs []reflect.Value |
|
less func(a, b reflect.Value) bool |
|
} |
|
|
|
func (s mapKeySorter) Len() int { return len(s.vs) } |
|
func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] } |
|
func (s mapKeySorter) Less(i, j int) bool { |
|
return s.less(s.vs[i], s.vs[j]) |
|
} |
|
|
|
// isProto3Zero reports whether v is a zero proto3 value. |
|
func isProto3Zero(v reflect.Value) bool { |
|
switch v.Kind() { |
|
case reflect.Bool: |
|
return !v.Bool() |
|
case reflect.Int32, reflect.Int64: |
|
return v.Int() == 0 |
|
case reflect.Uint32, reflect.Uint64: |
|
return v.Uint() == 0 |
|
case reflect.Float32, reflect.Float64: |
|
return v.Float() == 0 |
|
case reflect.String: |
|
return v.String() == "" |
|
} |
|
return false |
|
} |
|
|
|
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files |
|
// to assert that that code is compatible with this version of the proto package. |
|
const ProtoPackageIsVersion1 = true
|
|
|